Difference between revisions of "Q-factorial"

From specialfunctionswiki
Jump to: navigation, search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
The $q$-Factorial is defined for a non-negative integer $k$ by
+
The $q$-factorial is defined for a non-negative integer $k$ by
$$[n]_q! = \displaystyle\prod_{k=1}^n [k]_q=[1]_q [2]_q \ldots [n]_q,$$
+
$$[n]_q! = \displaystyle\prod_{k=1}^n [k]_q= \left( \dfrac{1-q}{1-q} \right) \left( \dfrac{1-q^2}{1-q} \right) \ldots \left( \dfrac{1-q^n}{1-q} \right),$$
 
where $[k]_q$ denotes a [[q-number|$q$-number]].
 
where $[k]_q$ denotes a [[q-number|$q$-number]].
  
 
=Properties=
 
=Properties=
 
[[Q-derivative power rule]]<br />
 
[[Q-derivative power rule]]<br />
[[Relationship between q-factorial and q-pochhammer]]<br />
 
  
 
=See Also=
 
=See Also=
 
[[q-number|$q$-number]]<br />
 
[[q-number|$q$-number]]<br />
 +
[[q-Pochhammer|$q$-Pochhammer]]<br />
  
 
=References=
 
=References=
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-number when a=n is a natural number|next=findme}}: (6.3)
+
* {{PaperReference|q-exponential and q-gamma functions. I. q-exponential functions|1994|D.S. McAnally|prev=Q-exponential E sub q|next=findme}}
 +
* {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=q-number|next=findme}}
 +
* {{BookReference|Quantum Calculus|2002|Victor Kac|author2=Pokman Cheung||prev=findme|next=findme}} $(3.1)$
 +
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-number when a=n is a natural number|next=findme}}: ($6.3$)
  
 
{{:q-calculus footer}}
 
{{:q-calculus footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 04:23, 26 December 2016

The $q$-factorial is defined for a non-negative integer $k$ by $$[n]_q! = \displaystyle\prod_{k=1}^n [k]_q= \left( \dfrac{1-q}{1-q} \right) \left( \dfrac{1-q^2}{1-q} \right) \ldots \left( \dfrac{1-q^n}{1-q} \right),$$ where $[k]_q$ denotes a $q$-number.

Properties

Q-derivative power rule

See Also

$q$-number
$q$-Pochhammer

References

$q$-calculus