Difference between revisions of "Q-factorial"
From specialfunctionswiki
(→Properties) |
|||
Line 14: | Line 14: | ||
* {{PaperReference|q-exponential and q-gamma functions. I. q-exponential functions|1994|D.S. McAnally|prev=Q-exponential E sub q|next=findme}} | * {{PaperReference|q-exponential and q-gamma functions. I. q-exponential functions|1994|D.S. McAnally|prev=Q-exponential E sub q|next=findme}} | ||
* {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=q-number|next=findme}} | * {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=q-number|next=findme}} | ||
+ | * {{BookReference|Quantum Calculus|2002|Victor Kac|author2=Pokman Cheung||prev=findme|next=findme}} $(3.1)$ | ||
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-number when a=n is a natural number|next=findme}}: ($6.3$) | * {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-number when a=n is a natural number|next=findme}}: ($6.3$) | ||
Latest revision as of 04:23, 26 December 2016
The $q$-factorial is defined for a non-negative integer $k$ by $$[n]_q! = \displaystyle\prod_{k=1}^n [k]_q= \left( \dfrac{1-q}{1-q} \right) \left( \dfrac{1-q^2}{1-q} \right) \ldots \left( \dfrac{1-q^n}{1-q} \right),$$ where $[k]_q$ denotes a $q$-number.
Properties
See Also
References
- D.S. McAnally: q-exponential and q-gamma functions. I. q-exponential functions (1994)... (previous)... (next)
- 1999: George E. Andrews, Richard Askey and Ranjan Roy: Special Functions ... (previous) ... (next)
- 2002: Victor Kac and Pokman Cheung: Quantum Calculus ... (previous) ... (next) $(3.1)$
- 2012: Thomas Ernst: A Comprehensive Treatment of q-Calculus ... (previous) ... (next): ($6.3$)