Difference between revisions of "Q-factorial"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
Line 14: Line 14:
 
* {{PaperReference|q-exponential and q-gamma functions. I. q-exponential functions|1994|D.S. McAnally|prev=Q-exponential E sub q|next=findme}}  
 
* {{PaperReference|q-exponential and q-gamma functions. I. q-exponential functions|1994|D.S. McAnally|prev=Q-exponential E sub q|next=findme}}  
 
* {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=q-number|next=findme}}
 
* {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=q-number|next=findme}}
 +
* {{BookReference|Quantum Calculus|2002|Victor Kac|author2=Pokman Cheung||prev=findme|next=findme}} $(3.1)$
 
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-number when a=n is a natural number|next=findme}}: ($6.3$)
 
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-number when a=n is a natural number|next=findme}}: ($6.3$)
  

Latest revision as of 04:23, 26 December 2016

The $q$-factorial is defined for a non-negative integer $k$ by $$[n]_q! = \displaystyle\prod_{k=1}^n [k]_q= \left( \dfrac{1-q}{1-q} \right) \left( \dfrac{1-q^2}{1-q} \right) \ldots \left( \dfrac{1-q^n}{1-q} \right),$$ where $[k]_q$ denotes a $q$-number.

Properties

Q-derivative power rule

See Also

$q$-number
$q$-Pochhammer

References

$q$-calculus