Difference between revisions of "Dirichlet series"
From specialfunctionswiki
(Created page with "Let $z \in \mathbb{C}$. A Dirichlet series is a series of the form $$\displaystyle\sum_{k=1}^{\infty} \dfrac{a_k}{k^z}.$$ ==Properties== ==References== {{BookReference|T...") |
|||
Line 5: | Line 5: | ||
==References== | ==References== | ||
− | {{BookReference|The General Theory Of Dirichlet's Series|1915|G.H. Hardy|author2= | + | {{BookReference|The General Theory Of Dirichlet's Series|1915|G.H. Hardy|author2=Marcel Riesz|prev=General Dirichlet series|next=findme}}: $I (2)$ (calls a Dirichlet series an <i>ordinary</i> Dirichlet series) |
[[Category:Definition]] | [[Category:Definition]] |
Revision as of 23:15, 17 March 2017
Let $z \in \mathbb{C}$. A Dirichlet series is a series of the form $$\displaystyle\sum_{k=1}^{\infty} \dfrac{a_k}{k^z}.$$
Properties
References
1915: G.H. Hardy and Marcel Riesz: The General Theory Of Dirichlet's Series ... (previous) ... (next): $I (2)$ (calls a Dirichlet series an ordinary Dirichlet series)