Difference between revisions of "Functional equation for Riemann zeta with cosine"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for all $z \in \mathbb{C}$: $$\zeta(1-z)=2^{1-z} \pi^{-z} \cos \left( \dfrac{\pi z}{2} \right)\Gamma(z)\zeta(z),$$ where $\zeta$ denote...")
 
(References)
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Functional equation for Riemann zeta|next=findme}}: § Introduction $(6')$
+
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Functional equation for Riemann zeta|next=Riemann xi}}: § Introduction $(6')$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 15:18, 18 March 2017

Theorem

The following formula holds for all $z \in \mathbb{C}$: $$\zeta(1-z)=2^{1-z} \pi^{-z} \cos \left( \dfrac{\pi z}{2} \right)\Gamma(z)\zeta(z),$$ where $\zeta$ denotes Riemann zeta, $\pi$ denotes pi, $\cos$ denotes cosine, and $\Gamma$ denotes gamma.

Proof

References