Difference between revisions of "Riemann xi"
From specialfunctionswiki
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The Riemann $\xi$ function is defined by the formula | The Riemann $\xi$ function is defined by the formula | ||
$$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$ | $$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$ | ||
− | where $\Gamma$ denotes | + | where $\pi$ denotes [[pi]], $\Gamma$ denotes [[gamma]], and $\zeta$ denotes [[Riemann zeta]]. |
− | + | <div align="center"> | |
+ | <gallery> | ||
+ | File:Complex Riemann Xi.jpg|Domain coloring of $\xi$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | =Properties= | ||
+ | [[Functional equation for Riemann xi]]<br /> | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Functional equation for Riemann zeta with cosine|next=Functional equation for Riemann xi}}: § Introduction $(7)$ | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 15:31, 18 March 2017
The Riemann $\xi$ function is defined by the formula $$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$ where $\pi$ denotes pi, $\Gamma$ denotes gamma, and $\zeta$ denotes Riemann zeta.
Properties
Functional equation for Riemann xi
References
- 1930: Edward Charles Titchmarsh: The Zeta-Function of Riemann ... (previous) ... (next): § Introduction $(7)$