Difference between revisions of "Error function is odd"
From specialfunctionswiki
(→Proof) |
|||
Line 5: | Line 5: | ||
==Proof== | ==Proof== | ||
+ | From the definition, | ||
+ | $$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}} \displaystyle\int_0^x e^{-\tau^2} \mathrm{d}\tau.$$ | ||
+ | So, | ||
+ | $$\begin{array}{ll} | ||
+ | \mathrm{erf}(-x) &= \dfrac{2}{\sqrt{\pi}} \displaystyle\int_0^{-x} e^{-\tau^2} \mathrm{d}\tau \\ | ||
+ | &\stackrel{u=-\tau}{=} \dfrac{2}{\sqrt{\pi}} \displaystyle\int_0^{x} e^{-u^2} \mathrm{d}u, | ||
+ | \end{array}$$ | ||
+ | proving that $\mathrm{erf}$ is odd. $\blacksquare$ | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Proven]] | ||
==References== | ==References== |
Revision as of 03:41, 28 March 2017
Theorem
The following formula holds: $$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$ where $\mathrm{erf}$ denotes the error function (i.e. $\mathrm{erf}$ is an odd function).
Proof
From the definition, $$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}} \displaystyle\int_0^x e^{-\tau^2} \mathrm{d}\tau.$$ So, $$\begin{array}{ll} \mathrm{erf}(-x) &= \dfrac{2}{\sqrt{\pi}} \displaystyle\int_0^{-x} e^{-\tau^2} \mathrm{d}\tau \\ &\stackrel{u=-\tau}{=} \dfrac{2}{\sqrt{\pi}} \displaystyle\int_0^{x} e^{-u^2} \mathrm{d}u, \end{array}$$ proving that $\mathrm{erf}$ is odd. $\blacksquare$
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 7.1.9