Difference between revisions of "Golden ratio"

From specialfunctionswiki
Jump to: navigation, search
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
The golden ratio $\varphi$ is the [[real number]]
+
The golden ratio, $\varphi$, is the [[irrational]] [[algebraic number|algebraic]] number
 
$$\varphi = \dfrac{1+\sqrt{5}}{2}.$$
 
$$\varphi = \dfrac{1+\sqrt{5}}{2}.$$
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Limit of quotient of consecutive Fibonacci numbers]]<br />
<strong>Theorem:</strong> The following formula holds:
+
[[Relationship between sine, imaginary number, logarithm, and the golden ratio]]<br />
$$2\sin(i \log(\varphi))=i,$$
+
[[Relationship between cosine, imaginary number, logarithm, and the golden ratio]]<br />
where $\sin$ denotes the [[sine]] function, $i$ denotes the [[imaginary number]], $\log$ denotes the [[logarithm]], and $\varphi$ denotes the [[golden ratio]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$2\cos(i \log(1+\varphi))=3,$$
 
where $\cos$ denotes the [[cosine]] function, $i$ denotes the [[imaginary number]], $\log$ denotes the [[logarithm]], and $\varphi$ denotes the [[golden ratio]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
  
 
=Videos=
 
=Videos=

Latest revision as of 00:21, 24 May 2017

The golden ratio, $\varphi$, is the irrational algebraic number $$\varphi = \dfrac{1+\sqrt{5}}{2}.$$

Properties

Limit of quotient of consecutive Fibonacci numbers
Relationship between sine, imaginary number, logarithm, and the golden ratio
Relationship between cosine, imaginary number, logarithm, and the golden ratio

Videos

The Golden Ratio & Fibonacci Numbers: Fact versus Fiction

References

[1]
[2]