Difference between revisions of "F(n+1)F(n-1)-F(n)^2=(-1)^n"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$F(n+1)F(n-1)-F(n)^2=(-1)^n,$$ where $F(n)$ denotes a Fibonacci number. ==Proof== ==References== * {{PaperReference|A Primer on...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=Sum of Lucas numbers|next=findme}}  
+
* {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=Sum of Lucas numbers|next=L(n+1)L(n-1)-L(n)^2=5(-1)^(n+1)}}  
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 00:21, 25 May 2017

Theorem

The following formula holds: $$F(n+1)F(n-1)-F(n)^2=(-1)^n,$$ where $F(n)$ denotes a Fibonacci number.

Proof

References