Difference between revisions of "Hypergeometric pFq"
Line 32: | Line 32: | ||
[https://www.youtube.com/watch?v=l8udH-Zb5Vs Special functions - Hypergeometric series (9 March 2011)]<br /> | [https://www.youtube.com/watch?v=l8udH-Zb5Vs Special functions - Hypergeometric series (9 March 2011)]<br /> | ||
− | = | + | =External links= |
[http://www.johndcook.com/HypergeometricFunctions.pdf Notes on hypergeometric functions]<br /> | [http://www.johndcook.com/HypergeometricFunctions.pdf Notes on hypergeometric functions]<br /> | ||
Rainville's Special Functions<br /> | Rainville's Special Functions<br /> | ||
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_555.htm Abramowitz and Stegun]<br /> | [http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_555.htm Abramowitz and Stegun]<br /> | ||
[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0016%7CLOG_0038 Note on a hypergeometric series - Cayley]<br /> | [http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0016%7CLOG_0038 Note on a hypergeometric series - Cayley]<br /> | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=finme}}: $4.1 (1)$ (note: typo in the text, the sum there starts at $1$ but should start at $0$) | ||
{{:Hypergeometric functions footer}} | {{:Hypergeometric functions footer}} | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 02:54, 8 June 2017
Let $p,q \in \{0,1,2,\ldots\}$ and $a_j,b_{\ell} \in \mathbb{R}$ for $j=1,\ldots,p$ and $\ell=1,\ldots,q$. We will use the notation $\vec{a}=\displaystyle\prod_{j=1}^p a_j$ and $\vec{b}=\displaystyle\prod_{\ell=1}^q b_{\ell}$ and we define the notations $$\vec{a}^{\overline{k}} = \displaystyle\prod_{j=1}^p a_j^{\overline{k}},$$ and $$\vec{a}+k = \displaystyle\prod_{j=1}^p (a_j+k),$$ (and similar for $\vec{b}^{\overline{k}}$). Define the generalized hypergeometric function $${}_pF_q(a_1,a_2,\ldots,a_p;b_1,\ldots,b_q;t)={}_pF_q(\vec{a};\vec{b};t)=\displaystyle\sum_{k=0}^{\infty}\dfrac{\displaystyle\prod_{j=1}^p a_j^{\overline{k}}}{\displaystyle\prod_{\ell=1}^q b_{\ell}^{\overline{k}}} \dfrac{t^k}{k!}.$$
Properties
Convergence of Hypergeometric pFq
Hypergeometric pFq terminates to a polynomial if an a_j is a nonpositive integer
Hypergeometric pFq diverges if a b_j is a nonpositive integer
Hypergeometric pFq converges for all z if p less than q+1
Hypergeometric pFq converges in the unit disk if p=q+1
Hypergeometric pFq diverges if p greater than q+1
Derivatives of Hypergeometric pFq
Differential equation for Hypergeometric pFq
Particular hypergeometric functions
Hypergeometric 0F0
Hypergeometric 1F0
Hypergeometric 0F1
Hypergeometric 1F1
Hypergeometric 2F1
Hypergeometric 1F2
Hypergeometric 2F0
Hypergeometric 2F1
Videos
Special functions - Hypergeometric series (9 March 2011)
External links
Notes on hypergeometric functions
Rainville's Special Functions
Abramowitz and Stegun
Note on a hypergeometric series - Cayley
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous) ... (next): $4.1 (1)$ (note: typo in the text, the sum there starts at $1$ but should start at $0$)