Difference between revisions of "Hypergeometric 2F3"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The hypergeometric series ${}_2F_3$ is defined by the series $${}_2F_3(a_1,a_2;b_1,b_2,b_3;z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1)_k(a_2)_k}{(b_1)_k(b_2)_k(b_3)_k}...")
 
 
Line 5: Line 5:
 
=Properties=
 
=Properties=
 
[[1F1(a;r;z)1F1(a;r;-z)=2F3(a,r-a;r,r/2,r/2+1/2;z^2/4)]]<br />
 
[[1F1(a;r;z)1F1(a;r;-z)=2F3(a,r-a;r,r/2,r/2+1/2;z^2/4)]]<br />
 +
[[1F1(a;2a;z)1F1(b;2b;-z)=2F3(a/2+b/2,a/2+b/2+1/2;a+1/2,b+1/2,a+b;z^2/4)]]<br />
  
 
=References=
 
=References=
  
 
{{:Hypergeometric functions footer}}
 
{{:Hypergeometric functions footer}}

Latest revision as of 20:31, 17 June 2017

The hypergeometric series ${}_2F_3$ is defined by the series $${}_2F_3(a_1,a_2;b_1,b_2,b_3;z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1)_k(a_2)_k}{(b_1)_k(b_2)_k(b_3)_k} \dfrac{z^k}{k!},$$ where $(a_1)_k$ denotes the Pochhammer symbol.

Properties

1F1(a;r;z)1F1(a;r;-z)=2F3(a,r-a;r,r/2,r/2+1/2;z^2/4)
1F1(a;2a;z)1F1(b;2b;-z)=2F3(a/2+b/2,a/2+b/2+1/2;a+1/2,b+1/2,a+b;z^2/4)

References

Hypergeometric functions