Difference between revisions of "Beta as improper integral"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds for $\mathrm{Re}(x)>0$ and $\mathrm{Re}(y)>0$: $$B(x,y)=\displaystyle\int_0^{\infty} \xi^{x-1}(1+\xi)^{-x-y} \mathrm{d}\xi,$$ where $B$...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Beta|next= | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Beta|next=B(x,y)=integral (t^(x-1)+t^(y-1))(1+t)^(-x-y) dt}}: $\S 1.5 (2)$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Revision as of 22:52, 24 June 2017
Theorem
The following formula holds for $\mathrm{Re}(x)>0$ and $\mathrm{Re}(y)>0$: $$B(x,y)=\displaystyle\int_0^{\infty} \xi^{x-1}(1+\xi)^{-x-y} \mathrm{d}\xi,$$ where $B$ denotes the beta function.
Proof
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.5 (2)$