Difference between revisions of "Sine integral"

From specialfunctionswiki
Jump to: navigation, search
(Videos)
(References)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
The sine integral is defined by
 
The sine integral is defined by
$$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) \mathrm{d}t, \quad |\mathrm{arg} z|<\pi,$$
+
$$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) \mathrm{d}t, \quad |\mathrm{arg} \hspace{2pt} z|<\pi,$$
 
where $\mathrm{sinc}$ denotes the [[sinc]] function.
 
where $\mathrm{sinc}$ denotes the [[sinc]] function.
  
Line 20: Line 20:
  
 
=References=
 
=References=
 +
* {{BookReference|Special Functions of Mathematical Physics and Chemistry|1956|Ian N. Sneddon|prev=Cosine integral|next=Error function}}: $\S 5 (5.10)$
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=}}: $5.2.1$
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=}}: $5.2.1$
  

Latest revision as of 00:42, 25 June 2017

The sine integral is defined by $$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) \mathrm{d}t, \quad |\mathrm{arg} \hspace{2pt} z|<\pi,$$ where $\mathrm{sinc}$ denotes the sinc function.

Properties

Derivative of sine integral
Antiderivative of sine integral
Relationship between exponential integral Ei, cosine integral, and sine integral

Videos

Laplace Transform of Sine Integral (2 January 2015)

References

$\ast$-integral functions