Difference between revisions of "Legendre chi"
From specialfunctionswiki
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The Legendre chi function is defined by | + | The Legendre chi function $\chi_{\nu}$ is defined by |
$$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$ | $$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$ | ||
=Properties= | =Properties= | ||
− | < | + | [[Derivative of Legendre chi 2]]<br /> |
− | + | [[Legendre chi in terms of polylogarithm]]<br /> | |
− | + | [[Catalan's constant using Legendre chi]]<br /> | |
− | + | [[Legendre chi in terms of Lerch transcendent]]<br /> | |
− | |||
− | </ | ||
− | </ | ||
− | + | =References= | |
+ | [http://en.wikipedia.org/wiki/Legendre_chi_function] | ||
− | + | [[Category:SpecialFunction]] | |
− |
Latest revision as of 17:48, 25 June 2017
The Legendre chi function $\chi_{\nu}$ is defined by $$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$
Properties
Derivative of Legendre chi 2
Legendre chi in terms of polylogarithm
Catalan's constant using Legendre chi
Legendre chi in terms of Lerch transcendent