Difference between revisions of "Log(z)=log(10)log 10(z)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\log(z)=\log(10)\log_{10}(z),$$ where $\log$ denotes logarithm and $\log_{10}$ denotes logarithm base a. ==Proof== ==Refer...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Log 10(z)=log 10(e)log(z)|next= | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Log 10(z)=log 10(e)log(z)|next=Taylor series of log(1+z)}}: $4.1.23$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 19:30, 25 June 2017
Theorem
The following formula holds: $$\log(z)=\log(10)\log_{10}(z),$$ where $\log$ denotes logarithm and $\log_{10}$ denotes logarithm base a.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.1.23$