Difference between revisions of "E"
From specialfunctionswiki
(3 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
=Properties= | =Properties= | ||
[[Euler's formula]]<br /> | [[Euler's formula]]<br /> | ||
− | < | + | [[e is irrational]]<br /> |
− | + | [[Log e(z)=log(z)]]<br /> | |
− | + | [[Log 10(z)=log 10(e)log(z)]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
=References= | =References= | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithm at -i|next=e is limit of (1+1/n)^n}}: 4.1.16 | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithm at -i|next=e is limit of (1+1/n)^n}}: $4.1.16$ |
[http://eulerarchive.maa.org/hedi/HEDI-2006-02.pdf Who proved $e$ is irrational?] | [http://eulerarchive.maa.org/hedi/HEDI-2006-02.pdf Who proved $e$ is irrational?] | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 19:35, 25 June 2017
We define the real number $e$ to be the number such that $$\displaystyle\int_1^e \dfrac{1}{t} \mathrm{d}t=1.$$ By the definition of the logarithm, we have $\log(e)=1$. The value of $e$ is $$e=2.71828182846\ldots.$$
Properties
Euler's formula
e is irrational
Log e(z)=log(z)
Log 10(z)=log 10(e)log(z)
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.1.16$