Difference between revisions of "Polylogarithm"
From specialfunctionswiki
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The polylogarithm $\mathrm{Li}_s$ is defined by the formula | + | __NOTOC__ |
+ | The polylogarithm $\mathrm{Li}_s$ is defined by the formula for $|z|<1$ by | ||
$$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$ | $$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$ | ||
A special case of the polylogarithm with $s=2$ is called a [[dilogarithm]]. | A special case of the polylogarithm with $s=2$ is called a [[dilogarithm]]. | ||
Line 8: | Line 9: | ||
</gallery> | </gallery> | ||
</div> | </div> | ||
+ | |||
+ | =Properties= | ||
+ | [[Lerch transcendent polylogarithm]]<br /> | ||
+ | [[Legendre chi in terms of polylogarithm]]<br /> | ||
=Videos= | =Videos= | ||
[https://www.youtube.com/watch?v=6v60ivoC2z8 polylogarithm function] | [https://www.youtube.com/watch?v=6v60ivoC2z8 polylogarithm function] | ||
− | = | + | =References= |
− | {{: | + | |
− | + | {{:Logarithm and friends footer}} | |
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 20:28, 25 June 2017
The polylogarithm $\mathrm{Li}_s$ is defined by the formula for $|z|<1$ by $$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$ A special case of the polylogarithm with $s=2$ is called a dilogarithm.
Properties
Lerch transcendent polylogarithm
Legendre chi in terms of polylogarithm