Difference between revisions of "Derivative of cosine"

From specialfunctionswiki
Jump to: navigation, search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Derivative of cosine|Proposition]]:</strong> $\dfrac{d}{dx}$[[Cosine|$\cos(x)$]]$= -$[[Sine|$\sin$]]$(x)$
+
The following formula holds:
<div class="mw-collapsible-content">
+
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \cos(z) = -\sin(z),$$
<strong>Proof:</strong> █
+
where $\cos$ denotes the [[cosine]] and $\sin$ denotes the [[sine]].
</div>
+
 
</div>
+
==Proof==
 +
From the definition of cosine,
 +
$$\cos(z) = \dfrac{e^{iz}+e^{-iz}}{2},$$
 +
and so using the [[derivative of the exponential function]], the [[derivative is a linear operator|linear property of the derivative]], the [[chain rule]], the [[reciprocal of i]], and the definition of the sine function,
 +
$$\begin{array}{ll}
 +
\dfrac{\mathrm{d}}{\mathrm{d}z} \cos(z) &= \dfrac{1}{2} \left[ \dfrac{\mathrm{d}}{\mathrm{d}z} [e^{iz}] + \dfrac{\mathrm{d}}{\mathrm{d}z}[e^{-iz}] \right] \\
 +
&= \dfrac{1}{2} \left[ ie^{iz} - ie^{-iz} \right] \\
 +
&= -\dfrac{e^{iz}-e^{-iz}}{2i} \\
 +
&= -\sin(z),
 +
\end{array}$$
 +
as was to be shown. █
 +
 
 +
==References==
 +
*{{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Derivative of sine|next=Derivative of tangent}}: $4.3.106$
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Proven]]

Latest revision as of 01:27, 1 July 2017

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \cos(z) = -\sin(z),$$ where $\cos$ denotes the cosine and $\sin$ denotes the sine.

Proof

From the definition of cosine, $$\cos(z) = \dfrac{e^{iz}+e^{-iz}}{2},$$ and so using the derivative of the exponential function, the linear property of the derivative, the chain rule, the reciprocal of i, and the definition of the sine function, $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} \cos(z) &= \dfrac{1}{2} \left[ \dfrac{\mathrm{d}}{\mathrm{d}z} [e^{iz}] + \dfrac{\mathrm{d}}{\mathrm{d}z}[e^{-iz}] \right] \\ &= \dfrac{1}{2} \left[ ie^{iz} - ie^{-iz} \right] \\ &= -\dfrac{e^{iz}-e^{-iz}}{2i} \\ &= -\sin(z), \end{array}$$ as was to be shown. █

References