Difference between revisions of "Ramanujan theta function"
From specialfunctionswiki
Line 1: | Line 1: | ||
Let $|ab|<1$. The Ramanujan theta function $f$ is defined by | Let $|ab|<1$. The Ramanujan theta function $f$ is defined by | ||
− | $$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{ | + | $$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{k(k+1)}{2}} b^{\frac{k(k-1)}{2}}.$$ |
+ | |||
+ | =Properties= | ||
+ | |||
+ | =References= | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 15:59, 10 July 2017
Let $|ab|<1$. The Ramanujan theta function $f$ is defined by $$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{k(k+1)}{2}} b^{\frac{k(k-1)}{2}}.$$