Difference between revisions of "Period of tanh"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for all $k \in \mathbb{Z}$: $$\tanh(z+\pi i k)=\tanh(z),$$ where $\tanh$ denotes the hyperbolic tangent, $\pi$ denotes pi,...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Period of cosh|next=findme}}: $4.5.15$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Period of cosh|next=Pythagorean identity for sinh and cosh}}: $4.5.15$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 22:23, 21 October 2017

Theorem

The following formula holds for all $k \in \mathbb{Z}$: $$\tanh(z+\pi i k)=\tanh(z),$$ where $\tanh$ denotes the hyperbolic tangent, $\pi$ denotes pi, and $i$ denotes the imaginary number.

Proof

References