Difference between revisions of "Difference of cosh and sinh"
From specialfunctionswiki
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sum of cosh and sinh|next= | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sum of cosh and sinh|next=Sinh is odd}}: $4.5.20$ |
Revision as of 22:32, 21 October 2017
Theorem
The following formula holds: $$\cosh(z) - \sinh(z) = e^{-z},$$ where $\cosh$ denotes hyperbolic cosine, $\sinh$ denotes hyperbolic sine, and $e^{-z}$ denotes the exponential.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.20$