Difference between revisions of "Difference of cosh and sinh"
From specialfunctionswiki
Line 8: | Line 8: | ||
==References== | ==References== | ||
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sum of cosh and sinh|next=Sinh is odd}}: $4.5.20$ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sum of cosh and sinh|next=Sinh is odd}}: $4.5.20$ | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 22:33, 21 October 2017
Theorem
The following formula holds: $$\cosh(z) - \sinh(z) = e^{-z},$$ where $\cosh$ denotes hyperbolic cosine, $\sinh$ denotes hyperbolic sine, and $e^{-z}$ denotes the exponential.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.20$