Difference between revisions of "Doubling identity for cosh (2)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\cosh(2z)=2\sinh^2(z)+1,$$ where $\cosh$ denotes hyperbolic cosine and $\sinh$ denotes hyperbolic sine. ==Proof==...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Doubling identity for cosh (1)|next=Doubling identity for cosh ( | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Doubling identity for cosh (1)|next=Doubling identity for cosh (3)}}: $4.5.32$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 23:15, 21 October 2017
Theorem
The following formula holds: $$\cosh(2z)=2\sinh^2(z)+1,$$ where $\cosh$ denotes hyperbolic cosine and $\sinh$ denotes hyperbolic sine.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.32$