Difference between revisions of "Doubling identity for cosh (2)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\cosh(2z)=2\sinh^2(z)+1,$$ where $\cosh$ denotes hyperbolic cosine and $\sinh$ denotes hyperbolic sine. ==Proof==...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Doubling identity for cosh (1)|next=Doubling identity for cosh (2)}}: $4.5.32$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Doubling identity for cosh (1)|next=Doubling identity for cosh (3)}}: $4.5.32$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 23:15, 21 October 2017

Theorem

The following formula holds: $$\cosh(2z)=2\sinh^2(z)+1,$$ where $\cosh$ denotes hyperbolic cosine and $\sinh$ denotes hyperbolic sine.

Proof

References