Difference between revisions of "Clausen sine"
From specialfunctionswiki
Line 2: | Line 2: | ||
$$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^z},$$ | $$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^z},$$ | ||
where $\sin$ denotes [[sine]]. | where $\sin$ denotes [[sine]]. | ||
+ | |||
+ | |||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Clausensine0plots.png|Plot of $\mathrm{Cl}_0$ on $[-20,20]$. | ||
+ | </gallery> | ||
+ | </div> | ||
=Properties= | =Properties= |
Revision as of 00:01, 29 October 2017
Let $s \in \mathbb{C}$. The Clausen sine function $\mathrm{Cl}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the analytic continuation of the series $$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^z},$$ where $\sin$ denotes sine.
- Clausensine0plots.png
Plot of $\mathrm{Cl}_0$ on $[-20,20]$.