Difference between revisions of "Clausen sine"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^s},$$
 
$$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^s},$$
 
where $\sin$ denotes [[sine]].
 
where $\sin$ denotes [[sine]].
 
 
 
<div align="center">
 
<gallery>
 
File:Clausensine0plots.png|Plot of $\mathrm{Cl}_0$ on $[-20,20]$.
 
</gallery>
 
</div>
 
  
 
=Properties=
 
=Properties=

Revision as of 00:11, 29 October 2017

Let $s \in \mathbb{C}$. The Clausen sine function $\mathrm{Cl}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the analytic continuation of the series $$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^s},$$ where $\sin$ denotes sine.

Properties

See also

Clausen cosine

References