Difference between revisions of "Gamma"

From specialfunctionswiki
Jump to: navigation, search
Line 36: Line 36:
 
<strong>Theorem:</strong> The following relationship between $\Gamma$ and the [[Sine | $\sin$]] function holds:
 
<strong>Theorem:</strong> The following relationship between $\Gamma$ and the [[Sine | $\sin$]] function holds:
 
$$\Gamma(x)\Gamma(1-x) = \dfrac{\pi}{\sin(\pi x)}.$$
 
$$\Gamma(x)\Gamma(1-x) = \dfrac{\pi}{\sin(\pi x)}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Proposition:</strong> $\Gamma(x) = \displaystyle\lim_{n \rightarrow \infty} \dfrac{n^x n!}{x(x+1)\ldots(x_n)}$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Proposition:</strong> $\Gamma(x)\Gamma(1-x)=\dfrac{\pi}{\sin(\pi x)}$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> proof goes here █  
 
<strong>Proof:</strong> proof goes here █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 07:26, 27 July 2014

The gamma function is the function defined by the integral (initially for positive values of $x$) $$\Gamma(x)=\displaystyle\int_0^{\infty} x^{t-1}e^{-x} dx.$$

Properties

Theorem: $\Gamma(x+1)=x\Gamma(x); x>0$

Proof: proof goes here █

Theorem: If $x \in \mathbb{N}$, then $\Gamma(x+1)=x!$.

Proof: proof goes here █

Theorem (Legendre Duplication Formula): $$\Gamma(2x)=\dfrac{2^{2x-1}}{\sqrt{\pi}} \Gamma(x)\Gamma \left( x +\dfrac{1}{2} \right).$$

Proof: proof goes here █

Proposition: If $z=0,-1,-2,\ldots$ then $\Gamma(z)=\infty$.

Proof: proof goes here █

Theorem: The following relationship between $\Gamma$ and the $\sin$ function holds: $$\Gamma(x)\Gamma(1-x) = \dfrac{\pi}{\sin(\pi x)}.$$

Proof: proof goes here █

Proposition: $\Gamma(x) = \displaystyle\lim_{n \rightarrow \infty} \dfrac{n^x n!}{x(x+1)\ldots(x_n)}$

Proof: proof goes here █

Proposition: $\Gamma(x)\Gamma(1-x)=\dfrac{\pi}{\sin(\pi x)}$

Proof: proof goes here █