Difference between revisions of "Q-zeta"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ is defined by
+
Let $|q|<1$. The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ is defined for $\mathrm{Re}(z)>1$ by
 
$$\zeta_q(z,x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{q^{-k}}{(q^{-k}[k]+x)^z},$$
 
$$\zeta_q(z,x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{q^{-k}}{(q^{-k}[k]+x)^z},$$
 
where $[k]$ denotes a [[q-number|$q$-number]].
 
where $[k]$ denotes a [[q-number|$q$-number]].

Revision as of 17:46, 11 February 2018

Let $|q|<1$. The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ is defined for $\mathrm{Re}(z)>1$ by $$\zeta_q(z,x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{q^{-k}}{(q^{-k}[k]+x)^z},$$ where $[k]$ denotes a $q$-number.

Properties

References