Difference between revisions of "Q-zeta"
From specialfunctionswiki
(Created page with "The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ by $$\zeta_q(z,x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{q^{-k}}{(q^{-k}[k]+x)^z},$$ whe...") |
(→References) |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ by | + | Let $|q|<1$. The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ is defined for $\mathrm{Re}(z)>1$ by |
− | $$\zeta_q(z | + | $$\zeta_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{q^{-k}}{(q^{-k}[k])^z},$$ |
where $[k]$ denotes a [[q-number|$q$-number]]. | where $[k]$ denotes a [[q-number|$q$-number]]. | ||
=Properties= | =Properties= | ||
+ | =See also= | ||
+ | [[q-Hurwitz zeta|$q$-Hurwitz zeta]]<br /> | ||
=References= | =References= | ||
+ | * {{PaperReference|q-Dedekind type sums related to q-zeta function and basic L-series|2006|Yilmaz Simsek|prev=findme|next=findme}}: $(2.4)$ | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 04:51, 12 February 2018
Let $|q|<1$. The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ is defined for $\mathrm{Re}(z)>1$ by $$\zeta_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{q^{-k}}{(q^{-k}[k])^z},$$ where $[k]$ denotes a $q$-number.