Difference between revisions of "Dedekind eta"
From specialfunctionswiki
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | Let $q=e^{2\pi i | + | Let $q=e^{2\pi i z}$, where $z$ is in the upper half plane. We define the Dedekind eta function by the formula |
− | $$\eta( | + | $$\eta(z) = e^{\frac{\pi i z}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$ |
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:DedekindetaRe.png|Real part of $\eta$. | ||
+ | File:DedekindetaIm.png|Imaginary part of $\eta$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | =Properties= | ||
+ | [[eta(z+1)=e^(i pi/12)eta(z)]]<br /> | ||
+ | [[eta(-1/z)=sqrt(-iz)eta(z)]]<br /> | ||
+ | |||
+ | =References= | ||
+ | [http://eta.math.georgetown.edu/ A collection of over 6200 identities for the Dedekind Eta Function] | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 05:20, 12 February 2018
Let $q=e^{2\pi i z}$, where $z$ is in the upper half plane. We define the Dedekind eta function by the formula $$\eta(z) = e^{\frac{\pi i z}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
Properties
eta(z+1)=e^(i pi/12)eta(z)
eta(-1/z)=sqrt(-iz)eta(z)
References
A collection of over 6200 identities for the Dedekind Eta Function