Difference between revisions of "Catalan's constant using Legendre chi"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Catalan's constant using Legendre chi:</strong> The following formula holds: $$K=-i\chi_2(i),$$ where $K$ is [...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$K=-i\chi_2(i),$$ | $$K=-i\chi_2(i),$$ | ||
where $K$ is [[Catalan's constant]] and $\chi$ denotes the [[Legendre chi]] function. | where $K$ is [[Catalan's constant]] and $\chi$ denotes the [[Legendre chi]] function. | ||
− | + | ||
− | + | ==Proof== | |
− | + | Recall, by definition, | |
− | + | $$K=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2},$$ | |
− | + | and | |
+ | $$\chi_2(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$ | ||
+ | Since $i^{2k+1}=i^{2k}i=(-1)^ki$, plugging in $i$ into $\chi_2$ yields | ||
+ | $$\chi_2(i) = \displaystyle\sum_{k=0}^{\infty} \dfrac{i^{2k+1}}{(2k+1)^{\nu}}=i \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^{\nu}}=iK.$$ | ||
+ | Hence, | ||
+ | $$-i\chi_2(i)=-i(iK)=-i^2K=-(-1)K=K,$$ | ||
+ | completing the proof. $\blacksquare$ | ||
+ | |||
+ | ==References== | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Proven]] |
Latest revision as of 15:46, 25 February 2018
Theorem
The following formula holds: $$K=-i\chi_2(i),$$ where $K$ is Catalan's constant and $\chi$ denotes the Legendre chi function.
Proof
Recall, by definition, $$K=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2},$$ and $$\chi_2(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$ Since $i^{2k+1}=i^{2k}i=(-1)^ki$, plugging in $i$ into $\chi_2$ yields $$\chi_2(i) = \displaystyle\sum_{k=0}^{\infty} \dfrac{i^{2k+1}}{(2k+1)^{\nu}}=i \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^{\nu}}=iK.$$ Hence, $$-i\chi_2(i)=-i(iK)=-i^2K=-(-1)K=K,$$ completing the proof. $\blacksquare$