Difference between revisions of "Catalan's constant using Legendre chi"
From specialfunctionswiki
Line 5: | Line 5: | ||
==Proof== | ==Proof== | ||
+ | Recall, by definition, | ||
+ | $$K=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2},$$ | ||
+ | and | ||
+ | $$\chi_2(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$ | ||
+ | Since $i^{2k+1}=i^{2k}i=(-1)^ki$, plugging in $i$ into $\chi_2$ yields | ||
+ | $$\chi_2(i) = \displaystyle\sum_{k=0}^{\infty} \dfrac{i^{2k+1}}{(2k+1)^{\nu}}=i \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^{\nu}}=iK.$$ | ||
+ | Hence, | ||
+ | $$-i\chi_2(i)=-i(iK)=-i^2K=-(-1)K=K,$$ | ||
+ | completing the proof. $\blacksquare$ | ||
==References== | ==References== | ||
[[Category:Theorem]] | [[Category:Theorem]] | ||
− | [[Category: | + | [[Category:Proven]] |
Latest revision as of 15:46, 25 February 2018
Theorem
The following formula holds: $$K=-i\chi_2(i),$$ where $K$ is Catalan's constant and $\chi$ denotes the Legendre chi function.
Proof
Recall, by definition, $$K=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2},$$ and $$\chi_2(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$ Since $i^{2k+1}=i^{2k}i=(-1)^ki$, plugging in $i$ into $\chi_2$ yields $$\chi_2(i) = \displaystyle\sum_{k=0}^{\infty} \dfrac{i^{2k+1}}{(2k+1)^{\nu}}=i \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^{\nu}}=iK.$$ Hence, $$-i\chi_2(i)=-i(iK)=-i^2K=-(-1)K=K,$$ completing the proof. $\blacksquare$