Difference between revisions of "1/B(n,m)=n((n+m-1) choose (m-1))"

From specialfunctionswiki
Jump to: navigation, search
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=1/B(n,m)=m((n+m-1) choose (n-1))|next=B(x,y)=2^(1-x-y)integral (1+t)^(x-1)(1-t)^(y-1)+(1+t)^(y-1)(1-t)^(x-1) dt}}: $\S 1.5 (9)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=1/B(n,m)=m((n+m-1) choose (n-1))|next=B(x,y)=2^(1-x-y)integral (1+t)^(x-1)(1-t)^(y-1)+(1+t)^(y-1)(1-t)^(x-1) dt}}: $\S 1.5 (9)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 21:02, 3 March 2018

Theorem

The following formula holds: $$\dfrac{1}{B(n,m)} = n {{n+m-1} \choose {m-1}},$$ where $B$ denotes the beta function and ${{n+m-1} \choose {m-1}}$ denotes a binomial coefficient.

Proof

References