Difference between revisions of "Digamma at z+n"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds for $n=1,2,3,\ldots$: $$\psi(z+n)=\dfrac{1}{z} + \dfrac{1}{z+1} + \ldots + \dfrac{1}{z+n-1} + \psi(z),$$ where $\psi$ denotes the dig...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Higher Transcendental Functions Volume I|1953| | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Digamma at n+1|next=findme}}: $\S 1.7 (10)$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 23:22, 3 March 2018
Theorem
The following formula holds for $n=1,2,3,\ldots$: $$\psi(z+n)=\dfrac{1}{z} + \dfrac{1}{z+1} + \ldots + \dfrac{1}{z+n-1} + \psi(z),$$ where $\psi$ denotes the digamma function.
Proof
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.7 (10)$