Difference between revisions of "Bernoulli numbers"
From specialfunctionswiki
(Created page with "The Bernoulli numbers are the numbers $B_n$ in the following formula: $$\dfrac{z}{e^z-1} = \displaystyle\sum_{k=0}^{\infty} B_k \dfrac{z^k}{k!}.$$ The Bernoulli numbers are in...") |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The Bernoulli numbers are the numbers $B_n$ in the following formula: | + | The Bernoulli numbers are the numbers $B_n$ in the following formula $z<2\pi$: |
$$\dfrac{z}{e^z-1} = \displaystyle\sum_{k=0}^{\infty} B_k \dfrac{z^k}{k!}.$$ | $$\dfrac{z}{e^z-1} = \displaystyle\sum_{k=0}^{\infty} B_k \dfrac{z^k}{k!}.$$ | ||
− | + | ||
+ | =See Also= | ||
+ | [[Bernoulli polynomial|Bernoulli polynomials]] | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Gamma function written as infinite product|next=Euler-Mascheroni constant}}: §1.13 (1) | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 23:23, 3 March 2018
The Bernoulli numbers are the numbers $B_n$ in the following formula $z<2\pi$: $$\dfrac{z}{e^z-1} = \displaystyle\sum_{k=0}^{\infty} B_k \dfrac{z^k}{k!}.$$
See Also
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): §1.13 (1)