Difference between revisions of "Pochhammer symbol with non-negative integer subscript"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$(a)_n = \left\{ \begin{array}{ll} 1, & \quad n=0 \\ a(a+1)\ldots(a+n-1), & \quad n=1,2,3,\ldots. \end{array} \right.$$ ==Proof== =...")
 
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
$$(a)_n = \left\{ \begin{array}{ll}
 
$$(a)_n = \left\{ \begin{array}{ll}
 
1, & \quad n=0 \\
 
1, & \quad n=0 \\
a(a+1)\ldots(a+n-1), & \quad n=1,2,3,\ldots.
+
a(a+1)\ldots(a+n-1), & \quad n=1,2,3,\ldots,
 
\end{array} \right.$$
 
\end{array} \right.$$
 +
where $(a)_n$ denotes the [[Pochhammer]] symbol.
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
 +
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Pochhammer|next=findme}}: $4.1 (2)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 23:25, 3 March 2018

Theorem

The following formula holds: $$(a)_n = \left\{ \begin{array}{ll} 1, & \quad n=0 \\ a(a+1)\ldots(a+n-1), & \quad n=1,2,3,\ldots, \end{array} \right.$$ where $(a)_n$ denotes the Pochhammer symbol.

Proof

References