Difference between revisions of "Euler numbers"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Euler numbers $E_k$ are the coefficients in the following Taylor series for $|z| < \dfrac{\pi}{2}$: $$\mathrm{sech}(z) = \displaystyle\sum_{k=0}^{\infty} E_k \dfrac{z^...")
 
 
Line 6: Line 6:
  
 
=References=
 
=References=
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Euler polynomial}}: $\S 1.14 (1)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Euler E generating function}}: $\S 1.14 (1)$
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 01:04, 4 March 2018

The Euler numbers $E_k$ are the coefficients in the following Taylor series for $|z| < \dfrac{\pi}{2}$: $$\mathrm{sech}(z) = \displaystyle\sum_{k=0}^{\infty} E_k \dfrac{z^n}{n!},$$ where $\mathrm{sech}$ denotes hyperbolic secant.

Properties

References