Difference between revisions of "Euler numbers"
From specialfunctionswiki
(Created page with "The Euler numbers $E_k$ are the coefficients in the following Taylor series for $|z| < \dfrac{\pi}{2}$: $$\mathrm{sech}(z) = \displaystyle\sum_{k=0}^{\infty} E_k \dfrac{z^...") |
|||
Line 6: | Line 6: | ||
=References= | =References= | ||
− | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Euler | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Euler E generating function}}: $\S 1.14 (1)$ |
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 01:04, 4 March 2018
The Euler numbers $E_k$ are the coefficients in the following Taylor series for $|z| < \dfrac{\pi}{2}$: $$\mathrm{sech}(z) = \displaystyle\sum_{k=0}^{\infty} E_k \dfrac{z^n}{n!},$$ where $\mathrm{sech}$ denotes hyperbolic secant.
Properties
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.14 (1)$