Difference between revisions of "Kelvin ker"
From specialfunctionswiki
(6 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
<div align="center"> | <div align="center"> | ||
<gallery> | <gallery> | ||
− | File: | + | File:Kelvinker,n=0plot.png|Graph of $\mathrm{ker}_0$. |
+ | File:Complexkelvinker,n=0plot.png|[[Domain coloring]] of $\mathrm{ker}_0$. | ||
</gallery> | </gallery> | ||
</div> | </div> | ||
+ | |||
+ | =Properties= | ||
=References= | =References= | ||
− | + | * {{BookReference|Higher Transcendental Functions Volume II|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Kelvin bei|next=Kelvin kei}}: $\S 7.2.3 (20)$ | |
+ | |||
+ | {{:Kelvin functions footer}} | ||
− | + | [[Category:SpecialFunction]] |
Latest revision as of 05:42, 4 March 2018
The $\mathrm{ker}_{\nu}$ function is defined as $$\mathrm{ker}_{\nu}(z)=\mathrm{Re} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Re}$ denotes the real part of a complex number and $K_{\nu}$ denotes the modified Bessel function $K_{\nu}$.
Domain coloring of $\mathrm{ker}_0$.
Properties
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume II ... (previous) ... (next): $\S 7.2.3 (20)$