Difference between revisions of "Cauchy pdf"
From specialfunctionswiki
(Created page with "The Cauchy probability density function $f \colon \mathbb{R} \rightarrow \mathbb{R}$ for $x_0 \in \mathbb{R}$ and $\gamma >0$ is given by $$f(x) = \dfrac{1}{\pi \gamma \le...") |
|||
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
+ | |||
+ | =See also= | ||
+ | [[Cauchy cdf]]<br /> | ||
=References= | =References= | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 15:39, 9 March 2018
The Cauchy probability density function $f \colon \mathbb{R} \rightarrow \mathbb{R}$ for $x_0 \in \mathbb{R}$ and $\gamma >0$ is given by $$f(x) = \dfrac{1}{\pi \gamma \left[1 + \left( \frac{x-x_0}{\gamma} \right)^2 \right]},$$ where $\pi$ denotes pi.