Difference between revisions of "Cauchy pdf"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Cauchy probability density function $f \colon \mathbb{R} \rightarrow \mathbb{R}$ for $x_0 \in \mathbb{R}$ and $\gamma >0$ is given by $$f(x) = \dfrac{1}{\pi \gamma \le...")
 
 
Line 4: Line 4:
  
 
=Properties=
 
=Properties=
 +
 +
=See also=
 +
[[Cauchy cdf]]<br />
  
 
=References=
 
=References=
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 15:39, 9 March 2018

The Cauchy probability density function $f \colon \mathbb{R} \rightarrow \mathbb{R}$ for $x_0 \in \mathbb{R}$ and $\gamma >0$ is given by $$f(x) = \dfrac{1}{\pi \gamma \left[1 + \left( \frac{x-x_0}{\gamma} \right)^2 \right]},$$ where $\pi$ denotes pi.

Properties

See also

Cauchy cdf

References