Difference between revisions of "Generating function for Laguerre L"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\dfrac{e^{\frac{-xt}{1-t}}}{1-t} = \displaystyle\sum_{k=0}^{\infty} L_k(x)t^k,$$ where $e^{\frac{-xt}{1-t}}$ denotes an exponentia...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Special Functions for Scientists and Engineers|1968|W.W. Bell|prev=Laguerre L|next=L n(x)=(e^x/n!)d^n/dx^n [x^n e^(-x)]}}: Theorem 6.1
+
* {{BookReference|Special Functions for Scientists and Engineers|1968|W.W. Bell|prev=Laguerre L|next=L n(x)=(e^x/n!)d^n/dx^n(x^n e^(-x))}}: Theorem 6.1
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 14:08, 15 March 2018

Theorem

The following formula holds: $$\dfrac{e^{\frac{-xt}{1-t}}}{1-t} = \displaystyle\sum_{k=0}^{\infty} L_k(x)t^k,$$ where $e^{\frac{-xt}{1-t}}$ denotes an exponential function and $L_k$ denotes Laguerre L.

Proof

References