Difference between revisions of "L n(x)=(e^x/n!)d^n/dx^n(x^n e^(-x))"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$L_n(x) = \dfrac{e^x}{n!} \dfrac{d^n}{dx^n} (x^n e^{-x}),$$ where $L_n$ denotes Laguerre L and $e^x$ denotes the exponential...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$L_n(x) = \dfrac{e^x}{n!} \dfrac{d^n}{dx^n} (x^n e^{-x}),$$
+
$$L_n(x) = \dfrac{e^x}{n!} \dfrac{\mathrm{d}^n}{\mathrm{d}x^n} (x^n e^{-x}),$$
 
where $L_n$ denotes [[Laguerre L]] and $e^x$ denotes the [[exponential]] function.
 
where $L_n$ denotes [[Laguerre L]] and $e^x$ denotes the [[exponential]] function.
  
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Special Functions for Scientists and Engineers|1968|W.W. Bell|prev=Generating function for Laguerre L|next=findme}}: Theorem 6.2
+
* {{BookReference|Special Functions for Scientists and Engineers|1968|W.W. Bell|prev=Generating function for Laguerre L|next=L n(0)=1}}: Theorem 6.2
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 14:15, 15 March 2018

Theorem

The following formula holds: $$L_n(x) = \dfrac{e^x}{n!} \dfrac{\mathrm{d}^n}{\mathrm{d}x^n} (x^n e^{-x}),$$ where $L_n$ denotes Laguerre L and $e^x$ denotes the exponential function.

Proof

References