Difference between revisions of "Gamma(n+1)=n!"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> If $n \in \{0,1,2,\ldots\}$, then $$\Gamma(n+1)=n!,$$ where $n!$...")
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Gamma at positive integers|Theorem]]:</strong> If $n \in \{0,1,2,\ldots\}$, then  
+
If $n \in \{0,1,2,\ldots\}$, then  
 
$$\Gamma(n+1)=n!,$$
 
$$\Gamma(n+1)=n!,$$
where $n!$ denotes the [[factorial]] of $n$.
+
where $\Gamma$ denotes the [[gamma]] function and $n!$ denotes the [[factorial]] of $n$.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong>  █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
* {{BookReference|Special Functions for Scientists and Engineers|1968|W.W. Bell|prev=Gamma(z+1)=zGamma(z)|next=findme}}: Theorem 2.3
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 19:47, 15 March 2018

Theorem

If $n \in \{0,1,2,\ldots\}$, then $$\Gamma(n+1)=n!,$$ where $\Gamma$ denotes the gamma function and $n!$ denotes the factorial of $n$.

Proof

References