Difference between revisions of "Logarithmic integral"

From specialfunctionswiki
Jump to: navigation, search
 
(One intermediate revision by the same user not shown)
Line 18: Line 18:
  
 
=References=
 
=References=
 +
* {{PaperReference|On certain definite integrals involving the exponential-integral|1881|James Whitbread Lee Glaisher|prev=Exponential integral Ei series|next=Relationship between logarithmic integral and exponential integral}}
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Exponential integral Ei|next=Exponential integral E}}: $5.1.3$
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Exponential integral Ei|next=Exponential integral E}}: $5.1.3$
  
 +
{{:Logarithm and friends footer}}
 
{{:*-integral functions footer}}
 
{{:*-integral functions footer}}
 +
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 03:33, 17 March 2018

The logarithmic integral is $$\mathrm{li}(x) = \displaystyle\int_0^x \dfrac{1}{\log(t)} \mathrm{d}t,$$ where $\log$ denotes the logarithm.

Properties

Relationship between logarithmic integral and exponential integral
Prime number theorem, logarithmic integral

See Also

Prime counting function

References

Logarithm and friends
$\ast$-integral functions