Difference between revisions of "Relationship between logarithmic integral and exponential integral"
From specialfunctionswiki
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$ | $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$ | ||
where $\mathrm{li}$ denotes the [[logarithmic integral]], $\mathrm{Ei}$ denotes the [[exponential integral Ei]], and $\log$ denotes the [[logarithm]]. | where $\mathrm{li}$ denotes the [[logarithmic integral]], $\mathrm{Ei}$ denotes the [[exponential integral Ei]], and $\log$ denotes the [[logarithm]]. | ||
− | + | ||
− | < | + | ==Proof== |
− | + | ||
− | + | ==References== | |
+ | * {{PaperReference|On certain definite integrals involving the exponential-integral|1881|James Whitbread Lee Glaisher|prev=Logarithmic integral|next=findme}} (<i>note: expresses this relationship as $\mathrm{Ei}(x)=\mathrm{li}(e^x)$</i>) | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 03:34, 17 March 2018
Theorem
The following formula holds: $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$ where $\mathrm{li}$ denotes the logarithmic integral, $\mathrm{Ei}$ denotes the exponential integral Ei, and $\log$ denotes the logarithm.
Proof
References
- James Whitbread Lee Glaisher: On certain definite integrals involving the exponential-integral (1881)... (previous)... (next) (note: expresses this relationship as $\mathrm{Ei}(x)=\mathrm{li}(e^x)$)