Difference between revisions of "Exponential integral E"
From specialfunctionswiki
(44 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The exponential | + | __NOTOC__ |
− | + | The exponential integral functions $E_n$ are defined for $\left|\mathrm{arg \hspace{2pt}}z\right|<\pi$ and $n=1,2,3,\ldots$ by | |
− | + | $$E_n(z)=\displaystyle\int_1^{\infty} \dfrac{e^{-zt}}{t^n} \mathrm{d}t.$$ | |
− | + | ||
− | + | <div align="center"> | |
+ | <gallery> | ||
+ | File:E1plot.png|Graph of $\mathrm{E}_1$. | ||
+ | File:E2plot.png|Graph of $\mathrm{E}_2$. | ||
+ | File:E3plot.png|Graph of $\mathrm{E}_3$. | ||
+ | File:Complexe1plot.png|[[Domain coloring]] of $\mathrm{E}_1$. | ||
+ | File:Complexe2plot.png|[[Domain coloring]] of $\mathrm{E}_2$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | =Properties= | ||
+ | [[Relationship between the exponential integral and upper incomplete gamma function]]<br /> | ||
+ | [[Symmetry relation of exponential integral E]]<br /> | ||
+ | [[Recurrence relation of exponential integral E]]<br /> | ||
+ | |||
=Videos= | =Videos= | ||
− | [https://www.youtube.com/watch?v=TppV_yDY3EQ Laplace transform of exponential integral]<br /> | + | [https://www.youtube.com/watch?v=TppV_yDY3EQ Laplace transform of exponential integral (2 January 2015)]<br /> |
+ | |||
+ | =See Also= | ||
+ | [[Exponential integral Ei]] | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Ei(-x)=-Integral from -x to infinity of e^(-t)/t dt}}: $5.1.1$ (<i>note: this formula only defines it for $n=1$</i>) | ||
+ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=findme}}: $5.1.4$ (<i>note:</i> this formula defines it for $n=0,1,2,\ldots$) | ||
+ | |||
+ | {{:*-integral functions footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 00:45, 24 March 2018
The exponential integral functions $E_n$ are defined for $\left|\mathrm{arg \hspace{2pt}}z\right|<\pi$ and $n=1,2,3,\ldots$ by $$E_n(z)=\displaystyle\int_1^{\infty} \dfrac{e^{-zt}}{t^n} \mathrm{d}t.$$
Domain coloring of $\mathrm{E}_1$.
Domain coloring of $\mathrm{E}_2$.
Properties
Relationship between the exponential integral and upper incomplete gamma function
Symmetry relation of exponential integral E
Recurrence relation of exponential integral E
Videos
Laplace transform of exponential integral (2 January 2015)
See Also
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $5.1.1$ (note: this formula only defines it for $n=1$)
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $5.1.4$ (note: this formula defines it for $n=0,1,2,\ldots$)