Difference between revisions of "Q-Binomial"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "$${n \brack m}_q = \dfrac{(q;q)_n}{(q;q)m(q;q)_{n-m}},$$ where $(q;q)_k$ is the q-Pochhammer symbol.")
 
Line 1: Line 1:
 
$${n \brack m}_q = \dfrac{(q;q)_n}{(q;q)m(q;q)_{n-m}},$$
 
$${n \brack m}_q = \dfrac{(q;q)_n}{(q;q)m(q;q)_{n-m}},$$
 
where $(q;q)_k$ is the [[q-Pochhammer symbol]].
 
where $(q;q)_k$ is the [[q-Pochhammer symbol]].
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> For $|x|<1,|q|<1$,
 +
$$\displaystyle\sum_{k=0}^{\infty} \dfrac{(a;q)_k}{(q;q)_k} x^k = \dfrac{(ax;q)_{\infty}}{(x;q)_{\infty}},$$
 +
where $(a;q)_{\xi}$ is the [q-Pochhammer symbol | $q$-Pochhammer symbol].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>

Revision as of 18:32, 27 July 2014

$${n \brack m}_q = \dfrac{(q;q)_n}{(q;q)m(q;q)_{n-m}},$$ where $(q;q)_k$ is the q-Pochhammer symbol.

Properties

Theorem: For $|x|<1,|q|<1$, $$\displaystyle\sum_{k=0}^{\infty} \dfrac{(a;q)_k}{(q;q)_k} x^k = \dfrac{(ax;q)_{\infty}}{(x;q)_{\infty}},$$ where $(a;q)_{\xi}$ is the [q-Pochhammer symbol | $q$-Pochhammer symbol].

Proof: proof goes here █