Difference between revisions of "Q-shifted factorial"
From specialfunctionswiki
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The $q$-shifted factorial $(a;q)_n$ is defined for $a,q \in \mathbb{C}$ by $(a;q)_0=1$ and for $n=1,2,3,\ldots$ or $n=\infty$, by | The $q$-shifted factorial $(a;q)_n$ is defined for $a,q \in \mathbb{C}$ by $(a;q)_0=1$ and for $n=1,2,3,\ldots$ or $n=\infty$, by | ||
− | $$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$ | + | $$(a;q)_n=\left\{ |
+ | \begin{array}{ll} | ||
+ | 1, & \quad n=0 \\ | ||
+ | \displaystyle\prod_{k=0}^{n-1} 1-aq^{k}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}), & \quad n=1,2,3,\ldots \\ | ||
+ | \end{array} \right.$$ | ||
=Properties= | =Properties= | ||
+ | |||
+ | =See Also= | ||
+ | [[Q-Pochhammer]]<br /> | ||
=References= | =References= | ||
+ | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Basic hypergeometric phi}}: $4.8 (1) (2)$ (assumes $|q|<1$) | ||
+ | * {{PaperReference|The q-gamma function for q greater than 1|1980|Daniel S. Moak|prev=Q-Gamma|next=Q-Gamma at z+1}} | ||
* {{PaperReference|q-Special functions, a tutorial|1994|Tom H. Koornwinder|prev=findme|next=findme}} | * {{PaperReference|q-Special functions, a tutorial|1994|Tom H. Koornwinder|prev=findme|next=findme}} | ||
− | * {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=findme|next=findme}} $(10.2.1)$ | + | * {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=findme|next=findme}} $(10.2.1)$ |
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 01:14, 25 December 2018
The $q$-shifted factorial $(a;q)_n$ is defined for $a,q \in \mathbb{C}$ by $(a;q)_0=1$ and for $n=1,2,3,\ldots$ or $n=\infty$, by $$(a;q)_n=\left\{ \begin{array}{ll} 1, & \quad n=0 \\ \displaystyle\prod_{k=0}^{n-1} 1-aq^{k}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}), & \quad n=1,2,3,\ldots \\ \end{array} \right.$$
Properties
See Also
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $4.8 (1) (2)$ (assumes $|q|<1$)
- Daniel S. Moak: The q-gamma function for q greater than 1 (1980)... (previous)... (next)
- Tom H. Koornwinder: q-Special functions, a tutorial (1994)... (previous)... (next)
- 1999: George E. Andrews, Richard Askey and Ranjan Roy: Special Functions ... (previous) ... (next) $(10.2.1)$