Difference between revisions of "Clausen sine"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^s},$$
 
$$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^s},$$
 
where $\sin$ denotes [[sine]].
 
where $\sin$ denotes [[sine]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Clausensine0.5plot.png|Graph of $\mathrm{Cl}_{0.5}$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 19:44, 7 September 2020

Let $s \in \mathbb{C}$. The Clausen sine function $\mathrm{Cl}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the analytic continuation of the series $$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^s},$$ where $\sin$ denotes sine.

Properties

See also

Clausen cosine

References