Difference between revisions of "Main Page"
(→Trigonometric functions) |
(→Discrete distributions) |
||
(90 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Special functions are ubiquitous in mathematics and applications of mathematics. The term applies to such a wide range of functions that no single source contains all of them. We aim to remedy this problem. | Special functions are ubiquitous in mathematics and applications of mathematics. The term applies to such a wide range of functions that no single source contains all of them. We aim to remedy this problem. | ||
− | + | <b><u>Registration</u></b> | |
− | + | Due to a resurgence of automated spam bots, account registration and anonymous editing is currently disabled. Please contact Tom Cuchta (tomcuchta@gmail.com) to gain access to edit the wiki. | |
=Special functions= | =Special functions= | ||
Line 10: | Line 10: | ||
<div class="grid"><center>[[File:dedekindetathumb.png|45px|link=Dedekind eta]]<br /> | <div class="grid"><center>[[File:dedekindetathumb.png|45px|link=Dedekind eta]]<br /> | ||
[[Dedekind eta]]</center></div> | [[Dedekind eta]]</center></div> | ||
− | |||
− | |||
<div class="grid"><center>[[File:dirichletetathumb.png|45px|link=Dirichlet eta]]<br /> | <div class="grid"><center>[[File:dirichletetathumb.png|45px|link=Dirichlet eta]]<br /> | ||
[[Dirichlet eta]]</center></div> | [[Dirichlet eta]]</center></div> | ||
<div class="grid"><center>[[File:dirichletbetathumb.png|45px|link=Dirichlet beta]]<br /> | <div class="grid"><center>[[File:dirichletbetathumb.png|45px|link=Dirichlet beta]]<br /> | ||
[[Dirichlet beta]]</center></div> | [[Dirichlet beta]]</center></div> | ||
− | <div class="grid"><center>[[ | + | <div class="grid"><center>[[Exponential|<randomimagebycategory categories="exponentialglyph" width="45" />]]<br /> |
[[Exponential]]</center></div> | [[Exponential]]</center></div> | ||
<div class="grid"><center>[[Floor|<randomimagebycategory categories="floorglyph" width="45" />]]<br /> | <div class="grid"><center>[[Floor|<randomimagebycategory categories="floorglyph" width="45" />]]<br /> | ||
Line 28: | Line 26: | ||
<div class="grid"><center>[[File:lambertwthumb.png|45px|link=Lambert W]]<br /> | <div class="grid"><center>[[File:lambertwthumb.png|45px|link=Lambert W]]<br /> | ||
[[Lambert W|Lambert $W$]]</center></div> | [[Lambert W|Lambert $W$]]</center></div> | ||
− | |||
− | |||
<div class="grid"><center>[[File:planckradiationthumb.png|45px|link=Planck radiation]]<br /> | <div class="grid"><center>[[File:planckradiationthumb.png|45px|link=Planck radiation]]<br /> | ||
[[Planck radiation]]</center></div> | [[Planck radiation]]</center></div> | ||
<div class="grid"><center>[[File:ramanujantauthumb.png|45px|link=Ramanujan tau]]<br /> | <div class="grid"><center>[[File:ramanujantauthumb.png|45px|link=Ramanujan tau]]<br /> | ||
[[Ramanujan tau|Ramanujan $\tau$]]</center></div> | [[Ramanujan tau|Ramanujan $\tau$]]</center></div> | ||
− | |||
− | |||
<div class="grid"><center>[[File:riemannxithumb.png|45px|link=Riemann xi]]<br /> | <div class="grid"><center>[[File:riemannxithumb.png|45px|link=Riemann xi]]<br /> | ||
[[Riemann xi|Riemann $\xi$]]</center></div> | [[Riemann xi|Riemann $\xi$]]</center></div> | ||
Line 44: | Line 38: | ||
</div> | </div> | ||
− | [[ | + | [[Bickley-Naylor]]<br /> |
− | |||
− | |||
− | |||
[[Carlitz-Goss Gamma function]]<br /> | [[Carlitz-Goss Gamma function]]<br /> | ||
− | [[Clausen | + | [[Clausen cosine]]<br /> |
− | [[ | + | [[Clausen sine]]<br /> |
[[Debye function]]<br /> | [[Debye function]]<br /> | ||
− | |||
− | |||
[[Dirichlet function]]<br /> | [[Dirichlet function]]<br /> | ||
[[Discriminant]]<br /> | [[Discriminant]]<br /> | ||
[[Distance to integers]]<br /> | [[Distance to integers]]<br /> | ||
[[Eisenstein series]]<br /> | [[Eisenstein series]]<br /> | ||
− | |||
− | |||
[[Heaviside step function]]<br /> | [[Heaviside step function]]<br /> | ||
[[Hermite function]]<br /> | [[Hermite function]]<br /> | ||
− | |||
− | |||
− | |||
− | |||
[[K-function]]<br /> | [[K-function]]<br /> | ||
[[Legendre chi]]<br /> | [[Legendre chi]]<br /> | ||
[[Legendre function]]<br /> | [[Legendre function]]<br /> | ||
[[Lerch transcendent]]<br /> | [[Lerch transcendent]]<br /> | ||
− | [[ | + | [[Log barrier]]<br /> |
+ | [[MacRobert E]]<br /> | ||
[[Maass forms]] <br /> | [[Maass forms]] <br /> | ||
[[Meijer G-function]]<br /> | [[Meijer G-function]]<br /> | ||
− | [[ | + | [[Mittag-Leffler]]<br /> |
[[Modular form]]<br /> | [[Modular form]]<br /> | ||
[[Mock modular forms]]<br /> | [[Mock modular forms]]<br /> | ||
[[Mock theta functions]]<br /> | [[Mock theta functions]]<br /> | ||
[[Nome]]<br /> | [[Nome]]<br /> | ||
− | |||
[[Painlevé transcendents]]<br /> | [[Painlevé transcendents]]<br /> | ||
[[Polyexponential]]<br /> | [[Polyexponential]]<br /> | ||
[[Ramanujan theta function]]<br /> | [[Ramanujan theta function]]<br /> | ||
+ | [[Riemann-Landau xi]]<br /> | ||
[[Riemann Siegel theta function]]<br /> | [[Riemann Siegel theta function]]<br /> | ||
[[Riemann theta function]]<br /> | [[Riemann theta function]]<br /> | ||
[[Sievert integral]]<br /> | [[Sievert integral]]<br /> | ||
[[Singular function]]<br /> | [[Singular function]]<br /> | ||
− | |||
[[Theta functions]]<br /> | [[Theta functions]]<br /> | ||
+ | [[Unit step function]]<br /> | ||
[[Voight function]]<br /> | [[Voight function]]<br /> | ||
[[Volterra function]]<br /> | [[Volterra function]]<br /> | ||
[[Weierstrass elementary factors]]<br /> | [[Weierstrass elementary factors]]<br /> | ||
− | |||
==Bessel functions and friends== | ==Bessel functions and friends== | ||
Line 99: | Line 82: | ||
{{:Kelvin functions footer}} | {{:Kelvin functions footer}} | ||
+ | |||
+ | |||
+ | [[Modified Struve function]]<br /> | ||
[[Riccati-Bessel S | Riccati-Bessel $S_n$]]<br /> | [[Riccati-Bessel S | Riccati-Bessel $S_n$]]<br /> | ||
[[Riccati-Bessel C | Riccati-Bessel $C_n$]]<br /> | [[Riccati-Bessel C | Riccati-Bessel $C_n$]]<br /> | ||
Line 104: | Line 90: | ||
[[Riccati-Bessel Zeta | Riccati-Bessel $\zeta_n$]] <br /> | [[Riccati-Bessel Zeta | Riccati-Bessel $\zeta_n$]] <br /> | ||
[[Weber function]]<br /> | [[Weber function]]<br /> | ||
+ | <div class="grid2"><center>[[Struve function|<randomimagebycategory categories="Struveglyph" width="45" />]]<br /> | ||
+ | [[Struve function]]</center></div> | ||
==*-c functions== | ==*-c functions== | ||
Line 112: | Line 100: | ||
==Continuous nowhere-differentiable functions and friends== | ==Continuous nowhere-differentiable functions and friends== | ||
<div class="grid"> | <div class="grid"> | ||
+ | <div class="grid"><center>[[File:devilstaircasethumb.png|45px|link=Devil's staircase]]<br /> | ||
+ | [[Devil's staircase]]</center></div> | ||
+ | <div class="grid"><center>[[File:minkowskiqmthumb.png|45px|link=Minkowski question mark]]<br /> | ||
+ | [[Minkowski question mark|Minkowski $?$]]</center></div> | ||
<div class="grid"><center>[[Riemann function|<randomimagebycategory categories="riemannglyph" width=45 />]]<br /> | <div class="grid"><center>[[Riemann function|<randomimagebycategory categories="riemannglyph" width=45 />]]<br /> | ||
[[Riemann function]]</center></div> | [[Riemann function]]</center></div> | ||
Line 136: | Line 128: | ||
[[Weierstrass nowhere differentiable function]]<br /> | [[Weierstrass nowhere differentiable function]]<br /> | ||
[[Wen function]]<br /> | [[Wen function]]<br /> | ||
+ | |||
+ | ==Defined by a differential equation== | ||
+ | [[Buchstab function]]<br /> | ||
+ | [[Dickman–de Bruijn function]]<br /> | ||
+ | [[Mathieu function]] <br /> | ||
==Elliptic functions== | ==Elliptic functions== | ||
Line 161: | Line 158: | ||
==Error function and friends== | ==Error function and friends== | ||
− | [[Dawson | + | <div class="grid2"><center>[[Dawson D+|<randomimagebycategory categories="dawsondplusglyph" width="45" />]]<br /> |
+ | [[Dawson D+]]</center></div> | ||
+ | [[Dawson D-]]<br /> | ||
+ | [[Faddeeva function]]<br /> | ||
[[Inverse complementary error function]]<br /> | [[Inverse complementary error function]]<br /> | ||
{{:Error functions footer}} | {{:Error functions footer}} | ||
Line 222: | Line 222: | ||
==Hypergeometric series== | ==Hypergeometric series== | ||
− | + | {{:Hypergeometric functions footer}} | |
− | |||
− | |||
− | |||
− | [[Hypergeometric | + | [[Hypergeometric 0F3]]<br /> |
− | |||
− | |||
[[Hypergeometric 1F1]]<br /> | [[Hypergeometric 1F1]]<br /> | ||
− | |||
[[Hypergeometric 1F2]]<br /> | [[Hypergeometric 1F2]]<br /> | ||
[[Hypergeometric 2F0]]<br /> | [[Hypergeometric 2F0]]<br /> | ||
− | [[Hypergeometric | + | [[Hypergeometric 2F3]]<br /> |
+ | [[Hypergeometric 3F2]]<br /> | ||
+ | [[Hypergeometric 4F1]]<br /> | ||
+ | [[Lauricella–Saran functions]]<br /> | ||
==*-integral functions== | ==*-integral functions== | ||
{{:*-integral functions footer}} | {{:*-integral functions footer}} | ||
+ | |||
+ | [[Böhmer C]]<br /> | ||
+ | [[Böhmer S]]<br /> | ||
+ | [[Entire exponential integral]]<br /> | ||
+ | |||
+ | ==Jacobi theta functions== | ||
+ | {{:Jacobi theta footer}} | ||
==Logarithm function and friends== | ==Logarithm function and friends== | ||
− | + | {{:Logarithm and friends footer}} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | [[Logarithm base a]]<br /> | ||
[[Logarithm (multivalued)]]<br /> | [[Logarithm (multivalued)]]<br /> | ||
[[Trilogarithm]]<br /> | [[Trilogarithm]]<br /> | ||
+ | |||
+ | ==Matrix functions== | ||
+ | [[Determinant]] <br /> | ||
+ | [[Matrix arcsin]]<br /> | ||
+ | [[Matrix exponential]]<br /> | ||
+ | [[Matrix cosh]]<br /> | ||
+ | [[Matrix sinh]]<br /> | ||
+ | [[Matrix logarithm]]<br /> | ||
+ | [[Matrix sine]]<br /> | ||
+ | [[Matrix cosine]]<br /> | ||
+ | [[Trace]]<br /> | ||
+ | |||
+ | ===Matrix hypergeometric functions=== | ||
+ | [[Matrix hypergeometric pFq]]<br /> | ||
+ | [[Matrix hypergeometric 0F3]]<br /> | ||
+ | [[Matrix hypergeometric 1F1]]<br /> | ||
+ | [[Matrix hypergeometric 1F2]]<br /> | ||
+ | [[Matrix hypergeometric 2F0]]<br /> | ||
+ | [[Matrix hypergeometric 2F3]]<br /> | ||
+ | [[Matrix hypergeometric 3F2]]<br /> | ||
+ | [[Matrix hypergeometric 4F1]]<br /> | ||
==Operators== | ==Operators== | ||
Line 262: | Line 279: | ||
[[Mellin transform]]<br /> | [[Mellin transform]]<br /> | ||
[[Radon transform]]<br /> | [[Radon transform]]<br /> | ||
+ | [[Two-dimensional Laplace transform]]<br /> | ||
==Polynomials== | ==Polynomials== | ||
Line 268: | Line 286: | ||
[[Abel p|Abel $p$]]</center></div> | [[Abel p|Abel $p$]]</center></div> | ||
</div> | </div> | ||
+ | [[Bernstein B]]<br /> | ||
+ | |||
+ | ==Probability distributions== | ||
+ | ===Continuous distributions=== | ||
+ | ====Probability density funcitons==== | ||
+ | [[Arcsin pdf]]<br /> | ||
+ | [[Beta pdf]]<br /> | ||
+ | [[Cauchy pdf]]<br /> | ||
+ | [[Chi-squared pdf]]<br /> | ||
+ | [[Exponential pdf]]<br /> | ||
+ | [[F pdf]]<br /> | ||
+ | [[Gamma pdf]]<br /> | ||
+ | [[Laplace pdf]]<br /> | ||
+ | [[Log-normal pdf]]<br /> | ||
+ | [[Normal pdf]]<br /> | ||
+ | [[Pareto pdf]]<br /> | ||
+ | [[Student's t pdf]]<br /> | ||
+ | [[Continuous uniform pdf]]<br /> | ||
+ | [[Weibull pdf]]<br /> | ||
+ | |||
+ | ====Cumulative Density Functions==== | ||
+ | [[Arcsin cdf]]<br /> | ||
+ | [[Beta cdf]]<br /> | ||
+ | [[Cauchy cdf]]<br /> | ||
+ | [[Chi-squared cdf]]<br /> | ||
+ | [[Exponential cdf]]<br /> | ||
+ | [[F cdf]]<br /> | ||
+ | [[Gamma cdf]]<br /> | ||
+ | [[Laplace cdf]]<br /> | ||
+ | [[Log-normal cdf]]<br /> | ||
+ | [[Normal cdf]]<br /> | ||
+ | [[Pareto cdf]]<br /> | ||
+ | [[Student's t cdf]]<br /> | ||
+ | [[Continuous uniform cdf]]<br /> | ||
+ | [[Weibull cdf]]<br /> | ||
+ | |||
+ | ===Discrete distributions=== | ||
+ | [[Bernoulli distribution]]<br /> | ||
+ | [[Binomial distribution]]<br /> | ||
+ | [[Discrete uniform distribution]]<br /> | ||
+ | [[Geometric distribution]]<br /> | ||
+ | [[Hypergeometric distribution]]<br /> | ||
+ | [[Negative binomial distribution]]<br /> | ||
+ | [[Poisson distribution]]<br /> | ||
+ | |||
{{:Orthogonal polynomials footer}} | {{:Orthogonal polynomials footer}} | ||
− | + | [[Adomian polynomials]]<br /> | |
[[Angelescu polynomials]]<br /> | [[Angelescu polynomials]]<br /> | ||
[[Bell polynomial]]<br /> | [[Bell polynomial]]<br /> | ||
Line 278: | Line 341: | ||
[[Cyclotomic polynomials]]<br /> | [[Cyclotomic polynomials]]<br /> | ||
[[Denisyuk polynomials]]<br /> | [[Denisyuk polynomials]]<br /> | ||
+ | [[Eberlein polynomials]]<br /> | ||
[[Hahn polynomial]]<br /> | [[Hahn polynomial]]<br /> | ||
[[Humbert polynomials]]<br /> | [[Humbert polynomials]]<br /> | ||
Line 312: | Line 376: | ||
===$q$-special functions=== | ===$q$-special functions=== | ||
− | [[Basic hypergeometric | + | [[Basic hypergeometric phi|Basic hypergeometric $\phi$]]<br /> |
[[Basic hypergeometric series psi|Basic hypergeometric series $\psi$]]<br /> | [[Basic hypergeometric series psi|Basic hypergeometric series $\psi$]]<br /> | ||
[[Continuous q-Hermite polynomial | Continuous $q$-Hermite polynomials]]<br /> | [[Continuous q-Hermite polynomial | Continuous $q$-Hermite polynomials]]<br /> | ||
Line 338: | Line 402: | ||
[[q-Gaussian distribution | $q$-Gaussian distribution]]<br /> | [[q-Gaussian distribution | $q$-Gaussian distribution]]<br /> | ||
[[q-Hermite polynomial | $q$-Hermite polynomial]]<br /> | [[q-Hermite polynomial | $q$-Hermite polynomial]]<br /> | ||
− | [[q- | + | [[q-Hurwitz zeta|$q$-Hurwitz zeta]]<br /> |
[[q-Pochhammer | $q$-Pochhammer symbol]]<br /> | [[q-Pochhammer | $q$-Pochhammer symbol]]<br /> | ||
[[q-Pollaczek polynomial]]<br /> | [[q-Pollaczek polynomial]]<br /> | ||
Line 347: | Line 411: | ||
[[q-Theta function | $q$-Theta function]]<br /> | [[q-Theta function | $q$-Theta function]]<br /> | ||
[[q-ultraspherical polynomial|$q$-ultraspherical polynomial]]<br /> | [[q-ultraspherical polynomial|$q$-ultraspherical polynomial]]<br /> | ||
+ | [[q-zeta|$q$-zeta]]<br /> | ||
[[Second q-shifted factorial|Second $q$-shifted factorial]]<br /> | [[Second q-shifted factorial|Second $q$-shifted factorial]]<br /> | ||
[[Tsallis q-exponential|Tsallis $q$-exponential]]<br /> | [[Tsallis q-exponential|Tsallis $q$-exponential]]<br /> | ||
Line 356: | Line 421: | ||
[[Dirichlet L-function | Dirichlet $L$-function]]<br /> | [[Dirichlet L-function | Dirichlet $L$-function]]<br /> | ||
+ | [[p-adic L function|$p$-adic $L$ function]]<br /> | ||
[[Ramanujan's sum]]<br /> | [[Ramanujan's sum]]<br /> | ||
[[Riemann prime counting]]<br /> | [[Riemann prime counting]]<br /> | ||
Line 371: | Line 437: | ||
[[Farey sequence]]<br /> | [[Farey sequence]]<br /> | ||
[[Fermat numbers]]<br /> | [[Fermat numbers]]<br /> | ||
− | [[Fibonacci | + | [[Fibonacci numbers]]<br /> |
[[Genocchi numbers]]<br /> | [[Genocchi numbers]]<br /> | ||
[[Harmonic number]]<br /> | [[Harmonic number]]<br /> | ||
− | [[Lah numbers]]<br /> | + | [[Idoneal number]]<br /> |
+ | [[Jacobsthal numbers]]<br /> | ||
+ | [[Signed Lah numbers]]<br /> | ||
+ | [[Unsigned Lah numbers]]<br /> | ||
[[Lucas numbers]]<br /> | [[Lucas numbers]]<br /> | ||
[[Lychrel numbers]]<br /> | [[Lychrel numbers]]<br /> | ||
+ | [[Pell numbers]]<br /> | ||
[[Mersenne numbers]]<br /> | [[Mersenne numbers]]<br /> | ||
[[Nielsen-Ramanujan sequence]]<br /> | [[Nielsen-Ramanujan sequence]]<br /> | ||
Line 387: | Line 457: | ||
[[Stirling numbers of the first kind]]<br /> | [[Stirling numbers of the first kind]]<br /> | ||
[[Stirling numbers of the second kind]]<br /> | [[Stirling numbers of the second kind]]<br /> | ||
+ | [[Sylvester's sequence]]<br /> | ||
[[Thue-Morse sequence]]<br /> | [[Thue-Morse sequence]]<br /> | ||
Line 410: | Line 481: | ||
[[Arcvercosine]]<br /> | [[Arcvercosine]]<br /> | ||
[[Arcversine]]<br /> | [[Arcversine]]<br /> | ||
− | |||
− | |||
− | |||
− | |||
[[Hacovercosine]]<br /> | [[Hacovercosine]]<br /> | ||
[[Hacoversine]]<br /> | [[Hacoversine]]<br /> | ||
Line 462: | Line 529: | ||
[[Multiple zeta function]]<br /> | [[Multiple zeta function]]<br /> | ||
[[p-adic zeta function | $p$-adic zeta function]]<br /> | [[p-adic zeta function | $p$-adic zeta function]]<br /> | ||
+ | [[q-Hurwitz zeta|$q$-Hurwitz zeta]]<br /> | ||
+ | [[q-zeta|$q$-zeta]]<br /> | ||
[[Reciprocal zeta function]]<br /> | [[Reciprocal zeta function]]<br /> | ||
[[Ruelle zeta function]]<br /> | [[Ruelle zeta function]]<br /> | ||
Line 481: | Line 550: | ||
=Special constants= | =Special constants= | ||
+ | [[Algebraic]] <br /> | ||
+ | [[Transcendental]] | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
Line 491: | Line 562: | ||
| [[Brun's constant]] || $B_2$ || $1.9021605831\ldots$ | | [[Brun's constant]] || $B_2$ || $1.9021605831\ldots$ | ||
|- | |- | ||
− | | [[Cahen's constant]] || | + | | [[Cahen's constant]] || $C$ || $0.64341054629\ldots$ |
|- | |- | ||
| [[Catalan constant]] || $G$ || $0.915965594177219015054603514932384110774 \ldots$ | | [[Catalan constant]] || $G$ || $0.915965594177219015054603514932384110774 \ldots$ | ||
Line 542: | Line 613: | ||
|- | |- | ||
| [[Khinchin's constant]] || $K$ || $2.685452001065306445309714835481795693820382293994462953051152 \ldots$ | | [[Khinchin's constant]] || $K$ || $2.685452001065306445309714835481795693820382293994462953051152 \ldots$ | ||
+ | |- | ||
+ | | [[Komornik–Loreti constant]] || $q$ || $1.787231650\ldots$ | ||
|- | |- | ||
| [[Legendre's constant]] || $B$ || $1$ | | [[Legendre's constant]] || $B$ || $1$ | ||
Line 575: | Line 648: | ||
| [[Ramanujan constant]] || $R$ || $262537412640768743.9999999999992500\ldots$ | | [[Ramanujan constant]] || $R$ || $262537412640768743.9999999999992500\ldots$ | ||
|- | |- | ||
− | | [[Reciprocal Fibonacci constant]] || $\psi$ || | + | | [[Reciprocal Fibonacci constant]] || $\psi$ || $3.35988566624317755\ldots$ |
|- | |- | ||
| [[Rutherford constant]] || $K_R$ || $0.8227\ldots$ | | [[Rutherford constant]] || $K_R$ || $0.8227\ldots$ | ||
Line 596: | Line 669: | ||
|- | |- | ||
| [[Thue constant]] || || $0.8590997969\ldots$ | | [[Thue constant]] || || $0.8590997969\ldots$ | ||
+ | |- | ||
+ | | [[Trott's constant]] || || $0.10841015\ldots$ | ||
|- | |- | ||
| [[Twin prime constant]] || || | | [[Twin prime constant]] || || | ||
Line 623: | Line 698: | ||
[[Absolute minimum]]<br /> | [[Absolute minimum]]<br /> | ||
[[Analytic continuation]]<br /> | [[Analytic continuation]]<br /> | ||
+ | [[Arithmetic functions]]<br /> | ||
[[Binomial series]]<br /> | [[Binomial series]]<br /> | ||
[[Cell]]<br /> | [[Cell]]<br /> | ||
Line 629: | Line 705: | ||
[[Difference equation of hypergeometric type]]<br /> | [[Difference equation of hypergeometric type]]<br /> | ||
[[Doubly periodic function]]<br /> | [[Doubly periodic function]]<br /> | ||
+ | [[Entire]]<br /> | ||
[[Fundamental pair of periods]]<br /> | [[Fundamental pair of periods]]<br /> | ||
[[Integration by parts]]<br /> | [[Integration by parts]]<br /> | ||
Line 659: | Line 736: | ||
=External Links= | =External Links= | ||
[http://authors.library.caltech.edu/43491/ Higher transcendental functions (Bateman project)]<br /> | [http://authors.library.caltech.edu/43491/ Higher transcendental functions (Bateman project)]<br /> | ||
− | [ | + | [https://github.com/tomcuchta/rainvillesfsolutions Solution manual to Rainville's "Special Functions"]<br /> |
[http://web.mst.edu/~lmhall/SPFNS/spfns.pdf "Special Functions" by Leon Hall]<br /> | [http://web.mst.edu/~lmhall/SPFNS/spfns.pdf "Special Functions" by Leon Hall]<br /> | ||
[http://www.johndcook.com/special_function_diagram.html Relations between special functions by John D. Cook]<br /> | [http://www.johndcook.com/special_function_diagram.html Relations between special functions by John D. Cook]<br /> | ||
[http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]<br /> | [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]<br /> | ||
− | |||
[https://staff.fnwi.uva.nl/t.h.koornwinder/specfun/ T.H Koornwinder's list of resources]<br /> | [https://staff.fnwi.uva.nl/t.h.koornwinder/specfun/ T.H Koornwinder's list of resources]<br /> | ||
[http://129.81.170.14/~vhm/Table.html Victor Moll's proofs of Gradshteyn and Ryzhik integrals]<br /> | [http://129.81.170.14/~vhm/Table.html Victor Moll's proofs of Gradshteyn and Ryzhik integrals]<br /> | ||
− | |||
[http://www.lmfdb.org/ LMFDB, the database of L-functions, modular forms, and related objects.]<br /> | [http://www.lmfdb.org/ LMFDB, the database of L-functions, modular forms, and related objects.]<br /> | ||
[http://algo.inria.fr/flajolet/Publications/books.html Phillipe Flajolet's "Analytic Combinatorics"]<br /> | [http://algo.inria.fr/flajolet/Publications/books.html Phillipe Flajolet's "Analytic Combinatorics"]<br /> |
Latest revision as of 13:31, 8 November 2024
Special functions are ubiquitous in mathematics and applications of mathematics. The term applies to such a wide range of functions that no single source contains all of them. We aim to remedy this problem.
Registration Due to a resurgence of automated spam bots, account registration and anonymous editing is currently disabled. Please contact Tom Cuchta (tomcuchta@gmail.com) to gain access to edit the wiki.
Contents
- 1 Special functions
- 1.1 Bessel functions and friends
- 1.2 *-c functions
- 1.3 Continuous nowhere-differentiable functions and friends
- 1.4 Defined by a differential equation
- 1.5 Elliptic functions
- 1.6 Error function and friends
- 1.7 Figurate numbers
- 1.8 Gamma function and friends
- 1.9 Hypergeometric series
- 1.10 *-integral functions
- 1.11 Jacobi theta functions
- 1.12 Logarithm function and friends
- 1.13 Matrix functions
- 1.14 Operators
- 1.15 Polynomials
- 1.16 Probability distributions
- 1.17 $q$-calculus
- 1.18 Special functions in number theory
- 1.19 Special sequences
- 1.20 Trigonometric functions
- 1.21 Zeta functions
- 1.22 Arithmetic Operations
- 2 Special constants
- 3 Numbers
- 4 Tools from calculus
- 5 Other
- 6 External Links
Special functions
Bickley-Naylor
Carlitz-Goss Gamma function
Clausen cosine
Clausen sine
Debye function
Dirichlet function
Discriminant
Distance to integers
Eisenstein series
Heaviside step function
Hermite function
K-function
Legendre chi
Legendre function
Lerch transcendent
Log barrier
MacRobert E
Maass forms
Meijer G-function
Mittag-Leffler
Modular form
Mock modular forms
Mock theta functions
Nome
Painlevé transcendents
Polyexponential
Ramanujan theta function
Riemann-Landau xi
Riemann Siegel theta function
Riemann theta function
Sievert integral
Singular function
Theta functions
Unit step function
Voight function
Volterra function
Weierstrass elementary factors
Bessel functions and friends
Modified Struve function
Riccati-Bessel $S_n$
Riccati-Bessel $C_n$
Riccati-Bessel $\xi_n$
Riccati-Bessel $\zeta_n$
Weber function
*-c functions
Continuous nowhere-differentiable functions and friends
Besicovitch functions
Bolzano function
Cellérier function
Katsuura function
Keisswetter function
Koch curve
Knopp function
Lynch function
McCarthy function
Orlicz functions
Peano function
Petr function
Schoenberg function
Schwarz function
Sierpiński curve
Weierstrass nowhere differentiable function
Wen function
Defined by a differential equation
Buchstab function
Dickman–de Bruijn function
Mathieu function
Elliptic functions
Elliptic functions (general overview and definitions)
Incomplete Elliptic E
Incomplete Elliptic K
Jacobi elliptic functions
Weierstrass $\sigma$
Error function and friends
Dawson D-
Faddeeva function
Inverse complementary error function
Figurate numbers
Tetrahedral numbers
Pyramidal numbers
Cubic numbers
Octahedral numbers
Enneadecagonal numbers
Heptadecagonal numbers
Hexadecagonal numbers
Icosagonal numbers
Icosidigonal numbers
Icositetragonal numbers
Icositrigonal numbers
Icosihenagonal numbers
Myriagonal numbers
Octadecagonal numbers
Rectangular numbers
Gamma function and friends
Falling factorial
Incomplete beta function
Loggamma
Lower incomplete gamma
Multiple gamma function
Primorial
Rising factorial
Trigamma
Hypergeometric series
Hypergeometric 0F3
Hypergeometric 1F1
Hypergeometric 1F2
Hypergeometric 2F0
Hypergeometric 2F3
Hypergeometric 3F2
Hypergeometric 4F1
Lauricella–Saran functions
*-integral functions
Böhmer C
Böhmer S
Entire exponential integral
Jacobi theta functions
Logarithm function and friends
Logarithm base a
Logarithm (multivalued)
Trilogarithm
Matrix functions
Determinant
Matrix arcsin
Matrix exponential
Matrix cosh
Matrix sinh
Matrix logarithm
Matrix sine
Matrix cosine
Trace
Matrix hypergeometric functions
Matrix hypergeometric pFq
Matrix hypergeometric 0F3
Matrix hypergeometric 1F1
Matrix hypergeometric 1F2
Matrix hypergeometric 2F0
Matrix hypergeometric 2F3
Matrix hypergeometric 3F2
Matrix hypergeometric 4F1
Operators
Alexander operator
Bernardi operator
Fourier transform
Laplace transform
Libera operator
Mellin transform
Radon transform
Two-dimensional Laplace transform
Polynomials
Probability distributions
Continuous distributions
Probability density funcitons
Arcsin pdf
Beta pdf
Cauchy pdf
Chi-squared pdf
Exponential pdf
F pdf
Gamma pdf
Laplace pdf
Log-normal pdf
Normal pdf
Pareto pdf
Student's t pdf
Continuous uniform pdf
Weibull pdf
Cumulative Density Functions
Arcsin cdf
Beta cdf
Cauchy cdf
Chi-squared cdf
Exponential cdf
F cdf
Gamma cdf
Laplace cdf
Log-normal cdf
Normal cdf
Pareto cdf
Student's t cdf
Continuous uniform cdf
Weibull cdf
Discrete distributions
Bernoulli distribution
Binomial distribution
Discrete uniform distribution
Geometric distribution
Hypergeometric distribution
Negative binomial distribution
Poisson distribution
Adomian polynomials
Angelescu polynomials
Bell polynomial
Boole polynomials
Charlier polynomial
Cyclotomic polynomials
Denisyuk polynomials
Eberlein polynomials
Hahn polynomial
Humbert polynomials
$q$-Hermite polynomial
Krawtchouk polynomial
Lagrange polynomial
Lidstone polynomial
Lommel polynomial
Macdonald polynomials
Mahler polynomial
Meixner polynomial
Meixner-Pollaczek polynomial
Mott polynomial
Narumi polynomials
Neumann polynomial
Padovan polynomials
Peters polynomials
Pidduck polynomial
Pincherle polynomials
Sister Celine's polynomials
Spread polynomial
Touchard polynomial
Rook polynomial
Stirling polynomial
$q$-calculus
Basic Fourier series
Euler-Jackson $q$-difference operator
$q$-analog
$q$-Bernoulli numbers
$q$-derivative
$q$-numbers
Symmetric $q$-numbers
$q$-special functions
Basic hypergeometric $\phi$
Basic hypergeometric series $\psi$
Continuous $q$-Hermite polynomials
Elliptic gamma function
Exton $q$-exponential
Generalized $q$-Bessel
Hahn-Exton $q$-Bessel
Gosper $q$-sine
Jackson $q$-Bessel (1)
Jackson $q$-Bessel (2)
Jackson $q$-Bessel (3)
LLT polynomials
$q$-Bessel function
$q$-Beta function
$q$-$\cos$
$q$-$\mathrm{Cos}$
$q$-Binomial coefficient
$q$-Dirichlet series
$q$-exponential $e_q$
$q$-exponential $e_{\frac{1}{q}}$
$q$-exponential $E_q$
$q$-exponential $E_{\frac{1}{q}}$
$q$-Fibonacci polynomials
q-Gamma function
$q$-Gaussian distribution
$q$-Hermite polynomial
$q$-Hurwitz zeta
$q$-Pochhammer symbol
q-Pollaczek polynomial
$q$-Polygamma function
$q$-shifted factorial
$q$-$\sin$
$q$-$\mathrm{Sin}$
$q$-Theta function
$q$-ultraspherical polynomial
$q$-zeta
Second $q$-shifted factorial
Tsallis $q$-exponential
Special functions in number theory
Dirichlet $L$-function
$p$-adic $L$ function
Ramanujan's sum
Riemann prime counting
Special sequences
Sequences are merely functions whose domain is a subset of $\mathbb{Z}$.
Amicable numbers
Associated Stirling numbers of the second kind
Bell numbers
Bernoulli numbers ($B_0 = 1, B_1 = \pm \frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = −\frac{1}{30}, B_5 = 0, B_6 = \frac{1}{42}, B_7 = 0, B_8 = −\frac{1}{30}$)
Betrothed numbers
Carmichael numbers
Euler numbers
Erdős–Nicolas numbers
Farey sequence
Fermat numbers
Fibonacci numbers
Genocchi numbers
Harmonic number
Idoneal number
Jacobsthal numbers
Signed Lah numbers
Unsigned Lah numbers
Lucas numbers
Lychrel numbers
Pell numbers
Mersenne numbers
Nielsen-Ramanujan sequence
Perfect numbers
Powerful numbers
Pronic numbers
$q$-Bernoulli numbers
Reduced Stirling numbers of the second kind
Stieltjes constants
Stirling numbers of the first kind
Stirling numbers of the second kind
Sylvester's sequence
Thue-Morse sequence
Trigonometric functions
Arcsin (multivalued)
Arccos (multivalued)
Arctan (multivalued
Arccsc (multivalued)
Arcsec (multivalued)
Arccot (multivalued)
Depreciated trigonometric functions
Arccosvercosine
Arccoversine
Archavercosine
Archaversine
Arcvercosine
Arcversine
Hacovercosine
Hacoversine
Havercosine
Haversine
Inverse tangent integral
Vercosine
Zeta functions
A directory of zeta functions.
Airy zeta function
Arithmetic zeta function
Arakawa-Kaneko zeta function
Arithmetic zeta function
Artin-Mazur zeta function
Barnes zeta function
Bessel zeta function
Beurling zeta function
Cotangent zeta function
Dedekind zeta function
Epstein zeta function
Fibonacci zeta function
Goss zeta function
Hasse-Weil zeta function
Height zeta function
Igusa zeta function
Ihara zeta function
Lefschetz zeta function
Lerch zeta function
Local zeta function
Matsumoto zeta function
Minakshisudaram-Pleijel zeta function
Motivic zeta function
Multiple zeta function
$p$-adic zeta function
$q$-Hurwitz zeta
$q$-zeta
Reciprocal zeta function
Ruelle zeta function
Secant zeta function
Selberg zeta function
Shimizu zeta function
Shintani zeta function
Witten zeta function
Z function
Arithmetic Operations
Addition
Division
Exponentiation
Hyperoperation
Multiplication
Subtraction
Tetration
Special constants
Name | Notation | Value |
---|---|---|
Apéry's constant | $\zeta(3)$ | $1.2020569031595942854 \ldots$ |
Artin constant | $C_{\mathrm{Artin}}$ | $0.3739558136\ldots$ |
Brun's constant | $B_2$ | $1.9021605831\ldots$ |
Cahen's constant | $C$ | $0.64341054629\ldots$ |
Catalan constant | $G$ | $0.915965594177219015054603514932384110774 \ldots$ |
Chaitin's constant | ||
Champernowne constant | $C_{10}$ | $0.12345678910111213141516171819202122232425\ldots$ |
Conway's constant | $1.303577269034 \ldots$ | |
Copeland-Erdős constant | $0.23571113171923...$ | |
Euler's number | $e$ | $2.71828182846 \ldots$ |
Erdős-Borwein Constant | $E$ | $1.606695152415291763\ldots$ |
Euler-Mascheroni constant | $\gamma$ | $0.5772156649015328606065120900824024310421593359399235\ldots$ |
Feigenbaum constants | $4.669201609102990671853203820466201617258185577475768632745651 \ldots$ | |
Freiman constant | $F$ | $4.5278295661\ldots$ |
Fransén–Robinson constant | $2.807770242028519365221501186557772932308085920930198291220054 \ldots$ | |
Gauss' constant | $G$ | $0.83462684167\ldots$ |
Gieseking constant | $G$ | $1.01494160640965\ldots$ |
Gelfond constant | $e^{\pi}$ | $23.14069263277926900572908636794854738026610624260021199344504 \ldots$ |
Gelfond–Schneider constant | $2^{\sqrt{2}}$ | $2.665144142690225188650297249873139848274211313714659492835979 \ldots$ |
Glaisher–Kinkelin constant | $A$ | $1.2824271291 \ldots$ |
Goh-Schmutz constant | $C$ | $1.1178641511899\ldots$ |
Golden ratio | $\phi$ | $1.618033988749894848204586834365638117720309179805762862135448 \ldots$ |
Gompertz constant | $G$ | $0.596347362323\ldots$ |
Graham's number | ||
Hall-Montgomery constant | $\delta_0$ | $0.17150049\ldots$ |
Imaginary number | $i$ | $\sqrt{-1}$ |
Jenny's constants | $J$ | $867.5309\ldots$ |
Kaprekar's constant | $6174$ | |
Khinchin's constant | $K$ | $2.685452001065306445309714835481795693820382293994462953051152 \ldots$ |
Komornik–Loreti constant | $q$ | $1.787231650\ldots$ |
Legendre's constant | $B$ | $1$ |
Lefschetz number | ||
Lévy's constant | ||
Liouville constant | ||
Meissel-Mertens constant | $M$ | $0.26149721284764278375...$ |
Mills' constant | $M$ | $1.306377883863080690468614492602605712916784585156713644368053 \ldots$ |
Nested radical constant | $C$ | $1.75793275\ldots$ |
Norton's constant | $B$ | $0.06535142\ldots$ |
Omega constant | $\Omega$ | $0.5671432904097838729\ldots$ |
Paper folding constant | $P$ | $0.85073618820186\ldots$ |
Pell constant | $P$ | $0.58057755820489\ldots$ |
Pi | $\pi$ | $3.141592653589793238462643383279502884197169399375105820974944 \ldots$ |
Porter's constant | $C$ | $1.4670780794\ldots$ |
q-pi | $\pi_q$ | |
Rabbit constant | $R$ | $0.7098034428612913146\ldots$ |
Ramanujan constant | $R$ | $262537412640768743.9999999999992500\ldots$ |
Reciprocal Fibonacci constant | $\psi$ | $3.35988566624317755\ldots$ |
Rutherford constant | $K_R$ | $0.8227\ldots$ |
Shallit Constant | ||
Sierpiński constant | $S$ | $0.8228252496\ldots$ |
Silver ratio | $\delta_s$ | $2.4142135623730950488 \ldots$ |
Soldner's Constant | $\mu$ | $1.45136923488338105028396848589202744949\ldots$ |
Square root spiral constant | $-2.1577829966\ldots$ | |
Stieltjes constants | $\gamma_n$ | |
Ternary Champernowne constant | $C_3$ | $0.598958167538433\ldots$ |
Theodorus constant | $1.8600250792\ldots$ | |
Thue constant | $0.8590997969\ldots$ | |
Trott's constant | $0.10841015\ldots$ | |
Twin prime constant | ||
White House switchboard constants | $W$ | $0.2024561414 \ldots$ |
Wyler constant | $\alpha_W$ | |
Zolotarev-Schur constant |
Numbers
Algebraic number $\overline{\mathbb{Q}}$
Complex number $\mathbb{C}$
Integer $\mathbb{Z}$
Irrational number $\mathbb{R} \setminus \mathbb{Q}$
Natural number $\mathbb{N}$
p-adic number
Prime number
Rational number $\mathbb{Q}$
Real number $\mathbb{R}$
Transcendental number
Tools from calculus
Absolute maximum
Absolute minimum
Analytic continuation
Arithmetic functions
Binomial series
Cell
Continuous
Derivative
Difference equation of hypergeometric type
Doubly periodic function
Entire
Fundamental pair of periods
Integration by parts
Integral from a to a
Laplace transform
Lattice generated by doubly periodic periods
Lebesgue integral
Local maximum
Local minimum
Periodic function
Period parallelogram
Polar coordinates
Product rule for derivatives
Quotient rule
Ratio test
Riemann integral
Stirling formula
Rolle's theorem
Taylor series
Weierstrass factorization
Other
Functions named after Pafnuty Chebyshev
Functions named after Peter Gustav Lejeune Dirichlet
Functions named after Leonard Euler
Functions named after Carl Gustav Jacob Jacobi
Functions named after Bernhard Riemann
Functions named after Karl Weierstrass
External Links
Higher transcendental functions (Bateman project)
Solution manual to Rainville's "Special Functions"
"Special Functions" by Leon Hall
Relations between special functions by John D. Cook
NIST Digital Library of Mathematical Functions
T.H Koornwinder's list of resources
Victor Moll's proofs of Gradshteyn and Ryzhik integrals
LMFDB, the database of L-functions, modular forms, and related objects.
Phillipe Flajolet's "Analytic Combinatorics"
Online number theory lecture notes and teaching materials
The On-Line Encyclopedia of Integer Sequences
"According to Abramowitz and Stegun" or arccoth needn't be uncouth