Difference between revisions of "Buchstab function"
From specialfunctionswiki
(Created page with "The Buchstab function is a continuous function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the initial value problem $$\dfrac{d}{du}(u\omega(u-1)); u...") |
|||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The Buchstab function is a [[continuous]] function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the [[initial value problem]] | The Buchstab function is a [[continuous]] function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the [[initial value problem]] | ||
− | $$\dfrac{d}{ | + | $$\dfrac{\mathrm{d}}{\mathrm{d}u}\Big(u\omega(u-1)\Big); u \geq 2$$ |
− | and for $1 \leq u \ | + | and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$. |
+ | |||
+ | =References= | ||
+ | [http://www.ams.org/journals/mcom/1990-55-191/S0025-5718-1990-1023043-8/S0025-5718-1990-1023043-8.pdf A differential delay equation arising from the Sieve of Eratosthenes] | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 13:32, 8 November 2024
The Buchstab function is a continuous function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the initial value problem $$\dfrac{\mathrm{d}}{\mathrm{d}u}\Big(u\omega(u-1)\Big); u \geq 2$$ and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$.
References
A differential delay equation arising from the Sieve of Eratosthenes