Difference between revisions of "Buchstab function"

From specialfunctionswiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The Buchstab function is a [[continuous]] function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the [[initial value problem]]  
 
The Buchstab function is a [[continuous]] function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the [[initial value problem]]  
$$\dfrac{d}{du}(u\omega(u-1)); u \geq 2$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}u}\Big(u\omega(u-1)\Big); u \geq 2$$
 
and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$.
 
and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$.
 +
 +
=References=
 +
[http://www.ams.org/journals/mcom/1990-55-191/S0025-5718-1990-1023043-8/S0025-5718-1990-1023043-8.pdf A differential delay equation arising from the Sieve of Eratosthenes]
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 13:32, 8 November 2024

The Buchstab function is a continuous function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the initial value problem $$\dfrac{\mathrm{d}}{\mathrm{d}u}\Big(u\omega(u-1)\Big); u \geq 2$$ and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$.

References

A differential delay equation arising from the Sieve of Eratosthenes