Difference between revisions of "Dedekind eta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $q=e^{2\pi i t}$. We define the Dedekind eta function by the formula $$\eta(t) = e^{\frac{\pi i t}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$")
 
Line 1: Line 1:
Let $q=e^{2\pi i t}$. We define the Dedekind eta function by the formula
+
Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula
$$\eta(t) = e^{\frac{\pi i t}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
+
$$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$

Revision as of 22:50, 27 July 2014

Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$